Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Radiat Res ; 196(4): 404-416, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34407201

ABSTRACT

Microwave (MW) radiation poses the risk of potential hazards on human health. The present study investigated the effects of MW 10 GHz exposure for 3 h/day for 30 days at power densities of 5.23 ± 0.25 and 10.01 ± 0.15 mW/cm2 in the skin of rats. The animals exposed to 10 mW/cm2 (corresponded to twice the ICNIRP-2020 occupational reference level of MW exposure for humans) exhibited significant biophysical, biochemical, molecular and histological alterations compared to sham-irradiated animals. Infrared thermography revealed an increase in average skin surface temperature by 1.8°C and standard deviation of 0.3°C after 30 days of 10 mW/cm2 MW exposure compared to the sham-irradiated animals. MW exposure also led to oxidative stress (ROS, 4-HNE, LPO, AOPP), inflammatory responses (NFkB, iNOS/NOS2, COX-2) and metabolic alterations [hexokinase (HK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6-phospahte dehydrogenase (G6PD)] in 10 mW/cm2 irradiated rat skin. A significant alteration in expression of markers associated with cell survival (Akt/PKB) and HSP27/p38MAPK-related stress-response signaling cascade was observed in 10 mW/cm2 irradiated rat skin compared to sham-irradiated rat skin. However, MW-irradiated groups did not show apoptosis, evident by unchanged caspase-3 levels. Histopathological analysis revealed a mild cytoarchitectural alteration in epidermal layer and slight aggregation of leukocytes in 10 mW/cm2 irradiated rat skin. Altogether, the present findings demonstrated that 10 GHz exposure in continuous-wave mode at 10 mW/cm2 (3 h/day, 30 days) led to significant alterations in molecular markers associated with adaptive stress-response in rat skin. Furthermore, systematic scientific studies on more prevalent pulsed-mode of MW-radiation exposure for prolonged duration are warranted.


Subject(s)
Microwaves , Skin , Animals , Oxidative Stress , Rats , Signal Transduction
2.
Brain Behav Immun Health ; 5: 100089, 2020 May.
Article in English | MEDLINE | ID: mdl-34589861

ABSTRACT

Noise, a disturbing and unwanted sound is currently being perceived as a widespread environmental stressor. In the present study we investigated the activation of oxidative stress as a mechanism involved in cognitive impairment through changes in neuro-inflammation. Sprague Dawley rats (200-220 â€‹ â€‹g â€‹m) were exposed to moderate (100dB) sound pressure level (SPL) noise daily for 2 â€‹h â€‹s over a period of 15 and 30 days and the consequence on brain regions of hippocampus observed through behavioral studies by Morris Water Maze to assess effects on spatial memory coupled with biochemical evaluation of markers of oxidative stress and inflammation. Further, the underlying mechanism pertaining to apoptosis was investigated by immuno-histological studies through assessment of Caspase-3 and TUNEL assay as well as morphological parameters, namely Nissl bodies in CA1, CA3 and DG regions of hippocampus. Poorer performance in the MWM indicative of decrement in concept formation, attention, working memory, and reference memory was observed on 15 and 30 days of noise exposures. At the cellular level, increased oxidative stress and inflammation was noticed as evinced by elevated levels of TNF-α, IL-6, IL-1α and IFN-γ in both hippocampus and plasma. Exposure to noise also led to a gradual increase in the number of pyknotic and apoptotic neurons together with the increase in DNA fragmentation in hippocampus. Increased levels of inflammatory genes (i.g.) ccl2, ccr5, ifng, il13, il1a, tnfa coupled with decreased levels of bmp2 and il3 genes were found in both the noise exposure groups. Our findings revealed that moderate intensity noise exposure impaired early memory changes in expression of several gene families including genes associated with regulation of transcription, inflammatory response, and, response to oxidative stress.

3.
Int J Radiat Biol ; 91(5): 426-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25565559

ABSTRACT

OBJECTIVE: To delineate the effect of chronic electromagnetic field (EMF) exposure from radar on plasma melatonin and serotonin levels in occupationally exposed military personnel. SUBJECTS AND METHODS: A total of 166 male military personnel participated in the study out of which only 155 joined for blood draw. They were divided into three sets: Control group (n = 68), exposure group I (n = 40) exposed to 8-12 GHz and exposure group II (n = 58) working with radar at 12.5-18 GHz frequency. The three groups were further split into two groups according to their years of service (up to 10 years and > 10 years) in order to investigate the effect of years of exposure from radar. Melatonin and serotonin levels were estimated by enzyme immunoassay in fasting blood samples collected from 06:00-07:00 h. EMF measurements were recorded at different locations using Satimo EME Guard 'Personal Exposure Meter' and Narda 'Broad Band Field Meter'. RESULTS: The group I exposed population registered a minor though not significant decrease in plasma melatonin concentration while the other group II exposed population registered statistically significant decline in melatonin concentration when compared with controls. Highly significant increase in plasma serotonin levels was found in exposure group II when compared to control whereas marginal non-significant rise was also registered in exposure group I in comparison to control. Exposure in terms of length of service up to 10 years did not produce any significant effect in the indoleamine levels in both the exposure groups when they were compared with their respective control groups. Whereas, length of service greater than 10 years was observed to decrease and increase respectively the melatonin and serotonin concentration significantly in exposure group II but not in exposure group I. However, correlation test did not yield any significant association between years of service and melatonin or serotonin levels respectively in both the exposure sets I and II. No significant association was observed between melatonin and serotonin levels as well. CONCLUSION: The study showed the EMF ability to influence plasma melatonin and serotonin concentration in radar workers, significantly in 12.5-18 GHz range with service period greater than 10 years.


Subject(s)
Electromagnetic Fields/adverse effects , Melatonin/blood , Occupational Exposure/adverse effects , Radar , Serotonin/blood , Adult , Humans , Male , Middle Aged , Military Personnel , Young Adult
4.
Noise Health ; 13(55): 452-8, 2011.
Article in English | MEDLINE | ID: mdl-22122962

ABSTRACT

The study explores the effect of occupational noise on oxidative stress status and prophylactic effect of Vitamin E and carbogen (5% CO 2 +95%O 2 ) breathing in alleviating the oxidative damage and conserving the hearing in human volunteers exposed to intense occupational noise. Plasma total antioxidant status, blood glutathione (GSH), malondialdehyde (MDA), antioxidant enzyme activities of GSH peroxidase (EC 1.11.1.9, GPx), superoxide dismutase (EC 1.15.1.1; SOD) in erythrocytes, nitric oxide and nitric oxide synthase in plasma were assessed before and after 6 days of administration of Vitamin E and Carbogen. Results of the study indicate that the exposure to noise for 6 days increased blood concentration of MDA, decreased concentrations of reduced GSH, antioxidant enzyme activity of SOD and plasma total antioxidant status in control (noise) group. Vitamin E- supplemented group showed decline in oxidative stress reflected by significant decrease in blood concentration of MDA and increase in antioxidant enzyme activity of erythrocyte SOD. Results of audiometric studies revealed that breathing of carbogen prevented the development of temporary threshold shift; thereby reducing the risk of noise induced hearing loss.


Subject(s)
Carbon Dioxide/pharmacology , Hearing Loss, Noise-Induced/prevention & control , Noise, Occupational/adverse effects , Oxidative Stress/drug effects , Oxygen/pharmacology , Vitamin E/pharmacology , Administration, Inhalation , Adult , Analysis of Variance , Audiometry , Blood Chemical Analysis , Carbon Dioxide/administration & dosage , Dietary Supplements , Glutathione/blood , Glutathione/physiology , Hearing Loss, Noise-Induced/blood , Humans , Male , Malondialdehyde/blood , Military Personnel , Nitric Oxide/blood , Nitric Oxide/physiology , Noise, Occupational/prevention & control , Oxidative Stress/physiology , Oxygen/administration & dosage , Superoxide Dismutase/blood , Superoxide Dismutase/physiology , Vitamin E/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...