Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 36(3): e22185, 2022 03.
Article in English | MEDLINE | ID: mdl-35133032

ABSTRACT

FGF19/FGF15 is an endocrine regulator of hepatic bile salt and lipid metabolism, which has shown promising effects in the treatment of NASH in clinical trials. FGF19/15 is transcribed and released from enterocytes of the small intestine into enterohepatic circulation in response to bile-induced FXR activation. Previously, the TSS of FGF19 was identified to bind Wnt-regulated TCF7L2/encoded transcription factor TCF4 in colorectal cancer cells. Impaired Wnt signaling and specifical loss of function of its coreceptor LRP6 have been associated with NASH. We, therefore, examined if TCF7L2/TCF4 upregulates Fgf19 in the small intestine and restrains NASH through gut-liver crosstalk. We examined the mice globally overexpressing, haploinsufficient, and conditional knockout models of TCF7L2 in the intestinal epithelium. The TCF7L2+/- mice exhibited increased plasma bile salts and lipids and developed diet-induced fatty liver disease while mice globally overexpressing TCF7L2 were protected against these traits. Comprehensive in vivo analysis revealed that TCF7L2 transcriptionally upregulates FGF15 in the gut, leading to reduced bile synthesis and diminished intestinal lipid uptake. Accordingly, VilinCreert2 ; Tcf7L2fl/fl mice showed reduced Fgf19 in the ileum, and increased plasma bile. The global overexpression of TCF7L2 in mice with metabolic syndrome-linked LRP6R611C substitution rescued the fatty liver and fibrosis in the latter. Strikingly, the hepatic levels of TCF4 were reduced and CYP7a1 was increased in human NASH, indicating the relevance of TCF4-dependent regulation of bile synthesis to human disease. These studies identify the critical role of TCF4 as an upstream regulator of the FGF15-mediated gut-liver crosstalk that maintains bile and liver triglyceride homeostasis.


Subject(s)
Bile Acids and Salts/metabolism , Fibroblast Growth Factors/metabolism , Ileum/metabolism , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Transcription Factor 7-Like 2 Protein/metabolism , Animals , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Fibroblast Growth Factors/genetics , Homeostasis , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mice , Mice, Inbred C57BL , Transcription Factor 7-Like 2 Protein/genetics
2.
Nat Genet ; 51(8): 1233-1243, 2019 08.
Article in English | MEDLINE | ID: mdl-31358993

ABSTRACT

Factors that underlie the clustering of metabolic syndrome traits are not fully known. We performed whole-exome sequence analysis in kindreds with extreme phenotypes of early-onset atherosclerosis and metabolic syndrome, and identified novel loss-of-function mutations in the gene encoding the pancreatic elastase chymotrypsin-like elastase family member 2A (CELA2A). We further show that CELA2A is a circulating enzyme that reduces platelet hyperactivation, triggers both insulin secretion and degradation, and increases insulin sensitivity. CELA2A plasma levels rise postprandially and parallel insulin levels in humans. Loss of these functions by the mutant proteins provides insight into disease mechanisms and suggests that CELA2A could be an attractive therapeutic target.


Subject(s)
Atherosclerosis/pathology , Insulin/blood , Islets of Langerhans/pathology , Metabolic Syndrome/pathology , Mutation , Pancreatic Elastase/blood , Pancreatic Elastase/genetics , Serine Endopeptidases/genetics , Adult , Age of Onset , Atherosclerosis/blood , Atherosclerosis/etiology , Case-Control Studies , Female , Genetic Predisposition to Disease , Humans , Insulin Resistance , Islets of Langerhans/metabolism , Linkage Disequilibrium , Male , Metabolic Syndrome/blood , Metabolic Syndrome/etiology , Middle Aged , Pedigree , Platelet Activation
4.
Am J Hum Genet ; 98(6): 1082-1091, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27181681

ABSTRACT

Nonsyndromic patent ductus arteriosus (PDA) is a common congenital heart defect (CHD) with both inherited and acquired causes, but the disease mechanisms have remained elusive. Using combined genome-wide linkage analysis and whole-exome sequencing (WES), we identified independent mutations in PRDM6, which encodes a nuclear protein that is specific to vascular smooth muscle cells (VSMC), has histone methyl transferase activities, and acts as a transcriptional suppressor of contractile proteins. In vitro assays showed that the mutations cause loss of function either by intracellular redistribution of the protein and/or by alteration of its methyltransferase activities. Wild-type embryonic ductus arteriosus (DA) exhibited high levels of PRDM6, which rapidly declined postnatally as the number of VSMCs necessary for ductus contraction increased. This dynamic change suggests that PRDM6 plays a key role in maintaining VSMCs in an undifferentiated stage in order to promote their proliferation and that its loss of activity results in premature differentiation and impaired remodeling of the DA. Our findings identify PRDM6 mutations as underlying genetic causes of nonsyndromic isolated PDA in humans and implicates the wild-type protein in epigenetic regulation of ductus remodeling.


Subject(s)
Ductus Arteriosus, Patent/genetics , Muscle Proteins/genetics , Muscle, Smooth, Vascular/metabolism , Mutation/genetics , Transcription Factors/genetics , Cell Differentiation , Cells, Cultured , Epigenesis, Genetic , Female , Fluorescent Antibody Technique , Histones , Humans , Immunoblotting , Male , Muscle, Smooth, Vascular/cytology , Pedigree
5.
Eur J Pharmacol ; 763(Pt A): 64-74, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26001373

ABSTRACT

Metabolic syndrome (MetS) is a cluster ofassociated metabolic traits that collectively confer unsurpassed risk for development of cardiovascular disease (CVD) and type 2 diabetes compared to any single CVD risk factor. Truncal obesity plays an exceptionally critical role among all metabolic traits of the MetS. Consequently, the prevalence of the MetS has steadily increased with the growing epidemic of obesity. Pharmacotherapy has been available for obesity for more than one decade, but with little success in improving the metabolic profiles. The serotonergic drugs and inhibitors of pancreatic lipases were among the few drugs that were initially approved to treat obesity. At the present time, only the pancreatic lipase inhibitor orlistat is approved for long-term treatment of obesity. New classes of anti-diabetic drugs, including glucagon-like peptide 1 receptor (GLP-1R) agonists and Dipeptidyl-peptidase IV (DPP-IV) inhibitors, are currently being evaluated for their effects on obesity and metabolic traits. The genetic studies of obesity and metabolic syndrome have identified novel molecules acting on the hunger and satiety peptidergic signaling of the gut-hypothalamus axis or the melanocortin system of the brain and are promising targets for future drug development. The goal is to develop drugs that not only treat obesity, but also favorably impact its associated traits.


Subject(s)
Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Molecular Targeted Therapy/methods , Obesity/drug therapy , Obesity/metabolism , Animals , Cardiovascular Diseases/complications , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/mortality , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/genetics , Obesity/complications , Obesity/genetics , Obesity/surgery , Risk Factors
6.
Oncotarget ; 5(22): 11000-3, 2014 Nov 30.
Article in English | MEDLINE | ID: mdl-25526027

ABSTRACT

Wnt signaling is as a major regulator of adipogenesis. It differentially regulates the fate of mesenchymal stem cells (MSC) by promoting osteogenesis and myogenesis, and inhibiting adipogenesis[1]. Its loss of function has been associated with impaired osteogenesis[2] and diverse congenital and adult cardiovascular disorders[3,4]. Our group has identified loss of function mutations in Wnt coreceptor LRP6 that underlie autosomal dominant early onset coronary artery (CAD), osteoporosis and most features of the metabolic syndrome, including high plasma triglyceride and LDL-C, diabetes, hypertension, hyperuricemia and fatty liver disease (unpublished data). Following we will describe our most pertinent findings related to Wnt/LRP6 regulation of de novo lipogenesis and adipogenesis and the role of impaired Wnt signaling in generation of ectopic fat, insulin resistance, elevated plasma lipids and non-alcoholic fatty liver disease (NAFLD).


Subject(s)
Adipogenesis/physiology , Lipids/biosynthesis , Lipogenesis/physiology , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Humans , Insulin Resistance , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...