Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19250, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357447

ABSTRACT

Recent breakthroughs in the field of nanoparticle-based therapeutic delivery methods have changed the standpoint of cancer therapy by effectively delaying the process of disease development. Nanoparticles have a unique capacity of good penetrating ability than other therapeutic leads used in traditional therapeutics, and also, they have the highest impact on disease management. In the current study isolongifolene-loaded Chitosan nanoparticles have been formulated, synthesized and then characterized by the use of Fourier Transform Infrared Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy. Further, the characterized chitosan nano formulation was evaluated for hemocompatibility, plasma stability, and in-vitro release. Isolongifolene-loaded chitosan nanoparticles were found to be compatible with plasma and also, they exhibited a constant release pattern. Hence, chitosan-loaded nanoparticles could be employed as an excellent adjuvant in cancer therapeutic, to combat the multi-drug resistance in solid tumors.


Subject(s)
Chitosan , Nanoparticles , Neoplasms , Chitosan/chemistry , Nanoparticles/chemistry , Microscopy, Electron, Transmission , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Particle Size , Drug Carriers/chemistry , Neoplasms/drug therapy
2.
Environ Pollut ; 307: 119412, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35568287

ABSTRACT

Synthetic azo dyes are extensively used in the textile industries, which are being released as textile effluent into the environment presence of azo dyes in the environment is great environmental concern therefore treatment of textile effluent is crucial for proper release of the effluent into the environment. Electrochemical oxidation (EO) is extensively used in the degradation of pollutants because of its high efficiency. In this study, photo-assisted electrooxidation (PEO) followed by biodegradation of the textile effluent was evaluated. The pretreatment of textile effluent was conducted by EO and PEO in a tubular flow cell with TiO2-Ti/IrO2-RuO2 anode and titanium cathode under different current densities (10, 15, and 20 mA cm-2). The chemical oxygen demand level reduced from 3150 mg L-1 to 1300 and 600 mg L-1under EO and PEO, respectively. Furthermore, biodegradation of EO and PEO pretreated textile effluent shows reduction in chemical oxygen demand (COD) from 1300 mg L-1 to 900 mg L-1and 600 mg L-1to 110 mg L-1, respectively. The most abundant genera were identified as Acetobacter, Achromobacter, Acidaminococcus, Actinomyces, and Acetomicrobium from the textile effluent. This study suggests that an integrated approach of PEO and subsequent biodegradation might be an effective and eco-friendly method for the degradation of textile effluent.


Subject(s)
Textile Industry , Water Pollutants, Chemical , Azo Compounds , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Coloring Agents , Electrodes , Textiles , Water Pollutants, Chemical/analysis
3.
Mol Cancer ; 21(1): 83, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35331236

ABSTRACT

BACKGROUND: Cancer is caused by a combination of genetic and epigenetic abnormalities. Current cancer therapies are limited due to the complexity of their mechanism, underlining the need for alternative therapeutic approaches. Interestingly, combining the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) system with next-generation sequencing (NGS) has the potential to speed up the identification, validation, and targeting of high-value targets. MAIN TEXT: Personalized or precision medicine combines genetic information with phenotypic and environmental characteristics to produce healthcare tailored to the individual and eliminates the constraints of "one-size-fits-all" therapy. Precision medicine is now possible thanks to cancer genome sequencing. Having advantages over limited sample requirements and the recent development of biomarkers have made the use of NGS a major leap in personalized medicine. Tumor and cell-free DNA profiling using NGS, proteome and RNA analyses, and a better understanding of immunological systems, are all helping to improve cancer treatment choices. Finally, direct targeting of tumor genes in cancer cells with CRISPR/Cas9 may be achievable, allowing for eliminating genetic changes that lead to tumor growth and metastatic capability. CONCLUSION: With NGS and CRISPR/Cas9, the goal is no longer to match the treatment for the diagnosed tumor but rather to build a treatment method that fits the tumor exactly. Hence, in this review, we have discussed the potential role of CRISPR/Cas9 and NGS in advancing personalized medicine.


Subject(s)
Neoplasms , Precision Medicine , CRISPR-Cas Systems , Gene Editing/methods , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/genetics , Neoplasms/therapy
5.
Cancer Gene Ther ; 26(7-8): 179-182, 2019 07.
Article in English | MEDLINE | ID: mdl-30905966

ABSTRACT

Osteosarcoma (OS) is considered to be a malignant bone tumour that mainly affects the long bones, but it is also involved in other bones of the body. Currently, surgery and chemotherapy have achieved some response to patients with OS, but they are not increasing the survival rate as well as treatment options. Researchers made lot of drug options for OS, but yet, no treatment is existing in sight for the disease and needs a new insight into the molecular and signaling pathways for the disease. Now, it is necessary to develop a novel and alternative strategy for the prognosis, diagnosis and treatment options for OS. MicroRNAs (miRNAs) are a small non-coding RNA, and their size ranges from 18 to 22 nt in length. In the nucleus, miRNAs originate and transcribe into primary transcripts and later cleaved to produce stem loop-structured precursor nucleotides. microRNA 21 (miR-21) is considered to be a trivial marker for many diseases and has been upregulated in many cancers. Moreover, it plays a main role in proliferation, migration, invasion and apoptosis. miR-21 and its associated pathways are very important and play a critical role in the pathogenesis of OS and are considered to be a biomarker and a therapeutic target for OS. To our knowledge, there is no paper that demonstrates the responsibility and the role of miR-21 in OS and the number of studies related to miR-21 in OS is spare. Therefore, the main aim of this paper is to give an outline of the recent clinical investigation and importance of miR-21 in OS. It has been suggested that the up- and downregulation of miRNAs plays a crucial role in the pathogenesis and progression of OS. Normally, miR-21 was found to be upregulated in OS; however, we summarize the clinical relevance and the recent research findings associated with miR-21 in OS.


Subject(s)
Bone Neoplasms/genetics , Osteosarcoma/genetics , Bone Neoplasms/pathology , Humans , MicroRNAs , Osteosarcoma/pathology
6.
Enzyme Microb Technol ; 120: 1-7, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30396390

ABSTRACT

Marine microbes have gained significant attention as potential biofactories for broad spectrum bioactive compounds. In the recent years, bioactive biosurfactants have warranted renewed interest from both environmental and clinical sectors as anti-biofilm agents due to their excellent properties of dispersing microbial biofilms. The present study explores a new glycolipid biosurfactant produced by a marine Staphylococcus saprophyticus exhibiting interesting biological activities. This glycolipid biosurfactant was purified and identified as Mannose-Mannose-Oleic acid (named as Staphylosan) based on the results of NMR, GC, GC-MS, MALDI-TOF-MS and tandem MS analysis. The surface tension and critical micelle concentration of purified Staphylosan was 30.9 mN m-1 and 24 mg L-1. Further, it showed promising biofilm inhibition and dislodging activities against a panel of profuse biofilm forming bacteria at both single and multi-species level which were isolated from boat hull biofilm environment such as Bacillus subtilis BHKH-7, Acinetobacter beijerinckii BHKH-11, Pseudomonas aeruginosa BHKH-19, Serratia liquefaciens BHKH-23, Marinobacter lipolyticus BHKH-31 and Micrococcus luteus BHKH-39. Moreover, it exhibited anionic charge and revealed non-toxicity towards brine shrimps, suggesting its environmental safety. This is a first report on Staphylosan, a multifunctional glycolipid surfactant from a marine Staphylococcus saprophyticus SBPS-15, exhibiting promising anti-biofilm activities and non-toxic in nature and thus finds possible potential use in many environmental applications especially under marine conditions.


Subject(s)
Biofilms/growth & development , Glycolipids/chemistry , Staphylococcus saprophyticus/metabolism , Surface-Active Agents/chemistry , Animals , Artemia/drug effects , Bacteria/classification , Bacteria/drug effects , Bacterial Physiological Phenomena , Biofilms/drug effects , Lethal Dose 50 , Staphylococcus saprophyticus/growth & development
7.
Hypertens Res ; 40(4): 361-363, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27881848

ABSTRACT

Hypertension (HTN) is one of the most common emerging disease in developing countries. It alters endothelial cell structure and function, resulting in several diseases, such as cardiovascular disease, peripheral vasculopathy, cerebrovascular disease and nephropathy. Although much progress has been made in researching HTN in recent years, early diagnosis and treatment of HTN are not yet satisfactory, and progression control/treatment is still poor. MicroRNAs are well-known regulators of the physiological and developmental processes of HTN. Our results revealed that miR-510 was upregulated in blood samples from HTN patients, whereas no significant differences were observed in the control samples. Methylation analyses corroborated the miR-510 upregulation in patient samples. These results suggested that miR-510 can be used as a novel biomarker for diagnosis and as a new therapeutic target for HTN.


Subject(s)
DNA Methylation , Hypertension/blood , MicroRNAs/blood , Adult , Biomarkers/blood , Blood Pressure/physiology , Essential Hypertension , Female , Humans , Hypertension/genetics , Male , MicroRNAs/genetics , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...