Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Respirology ; 28(6): 533-542, 2023 06.
Article in English | MEDLINE | ID: mdl-36642534

ABSTRACT

BACKGROUND AND OBJECTIVE: Neutrophil elastase (NE), is an important host defence against lung pathogens. Maintaining a homeostatic balance between proteases such as NE and anti-proteases such as secretory leukocyte protease inhibitor (SLPI), is important to prevent tissue damage. In the cystic fibrosis (CF) lung, elevated protease levels and impaired anti-protease defences contribute to tissue destruction. METHODS: We assessed lung function and sputum SLPI and NE levels from Pseudomonas aeruginosa infected and non-infected CF patients (median age 20 years at recruitment) during different phases of clinical disease. Healthy, never smokers served as healthy controls (HC). Sputum total cell counts (TCC) and colony forming units of P. aeruginosa were also determined in each sputum sample. RESULTS: Compared to HC, sputum SLPI was significantly reduced and NE increased in all CF subjects whether infected with P. aeruginosa or not, but the presence of P. aeruginosa worsened these parameters. Females with chronic P. aeruginosa infection had significantly lower sputum SLPI levels than males (p < 0.001). Higher sputum SLPI levels were associated with a significantly reduced rate of longitudinal decline in FEV1 % predicted (p < 0.05). Antibiotic treatment in P. aeruginosa-infected patients significantly decreased sputum TCC and increased SLPI levels, which positively correlated with improved lung function. CONCLUSION: Airway SLPI is deficient in CF, which appears more marked in P. aeruginosa-infected female patients. Importantly, a reduced anti-protease to protease ratio is associated with accelerated lung function decline. Treatment of an exacerbation is accompanied by partial recovery of anti-protease defences and significant improvement in lung function, an important clinical outcome.


Subject(s)
Cystic Fibrosis , Male , Humans , Female , Young Adult , Adult , Cystic Fibrosis/complications , Peptide Hydrolases , Lung , Leukocyte Elastase , Sputum , Respiratory Function Tests , Pseudomonas aeruginosa
2.
Biol Res ; 54(1): 38, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903297

ABSTRACT

BACKGROUND: Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS: Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator deferoxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION: These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.


Subject(s)
Cystic Fibrosis , Ferroptosis , Cell Death , Epithelial Cells , Humans , Lipid Peroxidation
3.
Biol. Res ; 54: 38-38, 2021. ilus, tab
Article in English | LILACS | ID: biblio-1505823

ABSTRACT

BACKGROUND: Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS: Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator defer-oxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION: These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.


Subject(s)
Humans , Cystic Fibrosis , Ferroptosis , Lipid Peroxidation , Cell Death , Epithelial Cells
4.
BMC Res Notes ; 11(1): 475, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30012199

ABSTRACT

OBJECTIVES: The Neural Tube Defects Research Group of University of Malaya was approached to analyze a tablet named TELSE, which may have resulted in a baby born with central nervous system malformation at the University of Malaya Medical Centre. In this animal experimental study, we investigated the content of TELSE and exposure of its contents that resulted in failure of primary neurulation. RESULTS: Liquid Chromatography Tandem Mass spectrophotometry analysis of the TELSE tablet confirmed the presence of trimethoprim as the active compound. The TELSE tablet-treated females produced significant numbers of embryos with exencephaly (n = 8, 36.4%, *P < 0.0001), in all litters. The TELSE tablet-treated females subsequently given folic acid did not result in pregnancies despite there being evidence of possible resorption. Furthermore, after multiple rounds of mating which did not yield viable pregnancies, eventually, 2 embryos with exencephaly were harvested in a litter of 6 at 0.05% w/v pure trimethoprim once. The use of trimethoprim, a folic acid antagonist, peri-conceptionally increased the risk of exencephaly in the mouse.


Subject(s)
Anti-Infective Agents, Urinary/toxicity , Neural Tube Defects/chemically induced , Trimethoprim/toxicity , Animals , Female , Germany , Japan , Malaysia , Male , Mice , Pregnancy , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...