Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36145640

ABSTRACT

The selection of an appropriate vehicle in a semi-solid topical product is of utmost importance since the vehicle composition and microstructure can potentially cause changes in drug-vehicle or vehicle-skin interactions and affect drug release and subsequent permeation into and across skin. Hence, the aim of this study was to evaluate different semi-solid formulations containing diclofenac sodium for the physicochemical and structural performance of excipients used and various physiological factors governing permeation of drugs applied to skin. The formulations (emulsion, emulgel, gel, and ointment) were prepared using conventional excipients and were found to be homogenous and stable. Rheological analysis demonstrated characteristic shear-thinning and viscoelastic behavior of formulations. The mean release rate of the gel formulation (380.42 ± 3.05 µg/cm2/h0.5) was statistically higher compared to all other formulations. In vitro permeation using human skin showed a significantly greater extent of drug permeation and retention for the emulgel formulation (23.61 ± 1.03 µg/cm2 and 47.95 ± 2.47 µg/cm2, respectively). The results demonstrated that the different formulations influenced product performance due to their inherent properties. The findings of this study demonstrated that a comprehensive physicochemical and structural evaluation is required to optimize the in vitro performance for dermatological formulations depending on the intended therapeutic effect.

2.
Drug Dev Ind Pharm ; 44(1): 125-134, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28956648

ABSTRACT

CONTEXT: The improper disposal of unused prescription opioids has a potential for abuse as well as environmental contamination. Consequently, there is an imperative need for an environmentally safe, convenient, and effective drug disposal system. OBJECTIVE: The objective of this study is to analyze the deactivation efficiency of the disposal system employing four model opioid drugs of high abuse potential. METHODS: The deactivation system used in this investigation is an activated granular carbon based disposal system in the form of a pouch, which can be used to safely and effectively deactivate unused or expired medications. HPLC method validation for each drug was performed prior to analyzing drug content in the deactivation study. Opioid drugs in different dosage forms were added to individual pouches in the presence of warm water. Pouches were shaken and sealed, then stored at room temperature. The deactivation efficiency of the system was tested by collecting samples at different time points up to 28 d. RESULTS: An average of 98.72% of medications were adsorbed by activated carbon within 8 h and continued to do so over time. At the end of the 28-d study, more than 99.99% of all drugs were deactivated. In the desorption study, almost no drug leached out from the activated carbon in larger volume of water and less than 1.3% leached out on extraction with ethanol. CONCLUSION: This unique drug disposal system successfully adsorbed and deactivated the model opioid medications by the end of 28 d, offering a safe and convenient route of disposal of unused or residual opioid drugs.


Subject(s)
Adsorption/drug effects , Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacokinetics , Carbon/chemistry , Humans
3.
Pharmaceutics ; 8(4)2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27827989

ABSTRACT

The misuse and improper disposal of psychoactive medications is a major safety and environmental concern. Hence, the proper disposal of these medications is critically important. A drug deactivation system which contains activated carbon offers a unique disposal method. In the present study, deactivation efficiency of this system was tested by using three model psychoactive drugs. HPLC validation was performed for each drug to ensure that the analytical method employed was suitable for its intended use. The method was found to be specific, accurate and precise for analyzing the drugs. The extent and rate of deactivation of the drugs was determined at several time points. After 28 days in the presence of activated carbon, the extent of leaching out of the drugs was evaluated. Deactivation started immediately after addition of the medications into the disposal pouches. Within 8 h, around 47%, 70% and 97% of diazepam, lorazepam and buprenorphine were adsorbed by the activated carbon, respectively. By the end of 28 days, over 99% of all drugs were deactivated. The desorption/leaching study showed that less than 1% of the active ingredients leached out from the activated carbon. Thus, this deactivation system can be successfully used for the disposal of psychoactive medications.

4.
Pharmaceutics ; 8(3)2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27399763

ABSTRACT

Effective topical therapy of cutaneous fungal diseases requires the delivery of the active agent to the target site in adequate concentrations to produce a pharmacological effect and inhibit the growth of the pathogen. In addition, it is important to determine the concentration of the drug in the skin in order to evaluate the subsequent efficacy and potential toxicity for topical formulations. For this purpose, an anhydrous gel containing sertaconazole nitrate as a model drug was formulated and the amount of the drug in the skin was determined by in vitro tape stripping. The apparent diffusivity and partition coefficients were then calculated by a mathematical model describing the dermal absorption as passive diffusion through a pseudo-homogenous membrane. The skin irritation potential of the formulation was also assessed by using the in vitro Epiderm™ model. An estimation of the dermal absorption parameters allowed us to evaluate drug transport across the stratum corneum following topical application. The estimated concentration for the formulation was found to be higher than the MIC100 at the target site which suggested its potential efficacy for treating fungal infections. The skin irritation test showed the formulation to be non-irritating in nature. Thus, in vitro techniques can be used for laying the groundwork in developing efficient and non-toxic topical products.

SELECTION OF CITATIONS
SEARCH DETAIL
...