Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
RSC Appl Polym ; 2(3): 403-414, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38800513

ABSTRACT

Biodegradable polyesters with interconnected macroporosity, such as poly(l-lactide) (PLLA) and poly(ε-caprolactone) (PCL), have gained significant importance in the fields of tissue engineering and separation. This study introduces functional macroinitiators, specifically polycaprolactone triol (PCLT) and polyethylene glycol (PEG), both OH-terminated, in the solventless ring-opening polymerization (ROP) of a liquid deep eutectic system monomer (DESm) composed of LLA and CL at a 30 : 70 molar ratio, respectively. The macroinitiators selectively initiate the organocatalyzed ROP of LLA in the DESm during the first polymerization stage, thereby modifying the PLLA architecture. This results in the formation of either branched or linear PLLA copolymers depending on the macroinitiator, PCLT and PEG, respectively. In the second stage, the ROP of the CL, which is a counterpart of the DESm, produces PCL that blends with the previously formed PLLA. The insights gained into the PLLA architectures during the first stage of the DESm ROP, along with the overall molecular weight and hydrophobicity of the resulting PLLA/PCL blend in bulk, were advantageously used to design polymerizable high internal phase emulsions (HIPEs) oil-in-DESm. By incorporating a liquid mixture of DESm and macroinitiators (PCLT or PEG), stable HIPE formulations were achieved. These emulsions sustained the efficient organocatalyzed ROP of the continuous phase at 37 °C with high conversions. The resulting polymer replicas of the HIPEs, characterized by macroporous and interconnected structures, were subjected to a degradation assay in PBS at pH 7.4 and 37 °C and remained mechanically stable for at least 30 days. Notably, they exhibited the capability to sorb crude oil in a proof-of-concept test, with a rate of 2 g g-1. The macroporous and interconnected features of the polyHIPEs, combined with their inherent degradation properties, position them as promising degradable polymeric sorbents for efficient separation of hydrophobic fluids from water.

2.
Biomacromolecules ; 25(5): 2792-2802, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38602263

ABSTRACT

Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.


Subject(s)
Dicarboxylic Acids , Fungal Proteins , Furans , Lipase , Polyesters , Polymerization , Lipase/chemistry , Lipase/metabolism , Furans/chemistry , Fungal Proteins/chemistry , Dicarboxylic Acids/chemistry , Polyesters/chemistry , Polyesters/chemical synthesis , Isomerism , Basidiomycota
3.
ACS Omega ; 8(10): 8991-9003, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36936293

ABSTRACT

Furanic polymers, currently mainly represented by polyethylene 2,5-furandicarboxylate (PEF), also known as polyethylene furanoate, have a fantastic potential to replace fossil-based polymers: for example, polyethylene terephthalate (PET). While 2,5-furandicarboxylic acid (FDCA), a precursor of PEF, and its derived polymers have been studied extensively, 2,5-bis(hydroxymethyl)furan (BHMF) has received relatively little attention so far. Similarly to FDCA, BHMF is a biobased platform chemical derived from renewable sources such as sugars. This review highlights different polymerization techniques for BHMF-based polyesters and addresses BHMF's relative instability during the synthesis of BHMF-derived polymers, including polycarbonates and polyurethanes. Furthermore, the degradability of furanic polyesters is discussed and BHMF's toxicity is briefly elaborated.

4.
Dalton Trans ; 51(4): 1384-1394, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34989363

ABSTRACT

The vapor phase infiltration (VPI) process of trimethyl aluminum (TMA) into poly(4-acetoxystyrene) (POAcSt), poly(nonyl methacrylate) (PNMA) and poly(tert-butyl methacrylate) (PtBMA) is reported. Depth-profiling X-ray photoelectron spectroscopy (XPS) measurements are used for the first time for VPI based hybrid materials to determine the aluminum content over the polymer film thickness. An understanding of the reaction mechanism on the interaction of TMA infiltrating into the different polymers was obtained through infrared (IR) spectroscopy supported by density functional theory (DFT) studies. It is shown that the loading with aluminum is highly dependent on the respective ester side group of the used polymer, which is observed to be the reactive site for TMA during the infiltration. IR spectroscopy hints that the infiltration is incomplete for POAcSt and PNMA, as indicated by the characteristic vibration bands of the aluminum coordination to the carbonyl groups within the polymers. In this context, two different reaction pathways are discussed. One deals with the formation of an acetal, the other is characterized by the release of a leaving group. Both were found to be in direct concurrence dependent on the polymer side group as revealed by DFT calculations of the IR spectra, as well as the reaction energies of two possible reaction paths. From this study, one can infer that the degree of infiltration in a VPI process strongly depends on the polymer side groups, which facilitates the choice of the polymer for targeted applications.

5.
Polymers (Basel) ; 13(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34372101

ABSTRACT

The vast majority of commodity polymers are acquired from petrochemical feedstock, and these resources will plausibly be depleted within the next 100 years. Therefore, the utilization of carbon-neutral renewable resources for the production of polymers is crucial in modern green chemistry. Herein, we report an eco-friendly strategy that uses enzyme catalysis to design biobased unsaturated (co)polyesters from muconic acid derivatives. This method is an attractive pathway for the production of well-defined unsaturated polyesters with minimum side reactions. A suite of characterization techniques was performed to probe the reaction mechanism and properties of the obtained polyesters. It is rationalized that the alkene functionality of the muconate monomers plays an important role in the enzyme catalysis mechanism. The rendered polyesters possessed excellent thermal stabilities and unreacted alkene functionality that can consecutively undergo chain extension, copolymerization, or act as an anchor for other functional groups. These properties open new avenues in the fields of unsaturated polyester resins and photosensitive coatings.

6.
Front Chem ; 8: 585, 2020.
Article in English | MEDLINE | ID: mdl-32850625

ABSTRACT

This critical review considers the extensive research and development dedicated, in the last years, to a single polymer, the poly(ethylene 2,5-furandicarboxylate), usually simply referred to as PEF. PEF importance stems from the fact that it is based on renewable resources, typically prepared from C6 sugars present in biomass feedstocks, for its resemblance to the high-performance poly(ethylene terephthalate) (PET) and in terms of barrier properties even outperforming PET. For the first time synthesis, properties, and end-life targeting-a more sustainable PEF-are critically reviewed. The emphasis is placed on how synthetic roots to PEF evolved toward the development of greener processes based on ring open polymerization, enzymatic synthesis, or the use of ionic liquids; together with a broader perspective on PEF end-life, highlighting recycling and (bio)degradation solutions.

7.
ACS Omega ; 5(3): 1488-1495, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32010822

ABSTRACT

Significant improvement in mechanical properties and shape recovery in polyurethanes can be obtained by cross-linking, usually performed in a traditional chemical fashion. Here, we report model studies of enzymatic transamidations of urethane-bond-containing esters to study the principles of an enzymatic build-up of covalent cross-linked polyurethane networks via amide bond formation. The Lipase-catalyzed transamidation reaction of a urethane-bond-containing model ester ethyl 2-(hexylcarbamoyloxy)propanoate with various amines is discussed. A side product was formed, that could be successfully identified, and its synthesis reduced to a minimum (<1%). Furthermore, a noncatalyzed transamidation that is performed without CalB as the catalyst could be observed. Both observations are due to the known high reactivity of amines with urethane bonds.

8.
ACS Omega ; 4(15): 16481-16492, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31616826

ABSTRACT

A series of poly(tetrahydrofuran)s with molecular weights above entanglement molecular weight M e were synthesized, and one of their end-groups was functionalized with a supramolecular entity so that the corresponding polymers form a brushlike structure suitable for comparison with conventional irreversible bottlebrush polymers. To compare their relaxation mechanisms, linear rheology was employed and showed that a hierarchical relaxation, which is usually observed in bottlebrush polymers, occurs in these materials, too. The polymer chain segments close to the supramolecular backbone are highly immobilized due to strong association in the center of polymer brush and cannot relax via reptation mechanism, which is mainly responsible for linear entangled polymer relaxations. Therefore, disentanglement can take much longer through contour length fluctuations and arm retraction processes similar to covalent bottlebrush polymers and combs. The relaxed ends of polymers then act as solvent to let the remaining segments of the polymeric brush undergo Rouse-like motions (constraint release Rouse). At longer times, additional plateau appears, which can be attributed to the relaxation of the entire supramolecular bottlebrush polymer via hopping or reptative motions. With an increase of temperature, viscoelastic solid behavior turns into viscoelastic liquid due to reversible depolymerization of the supramolecular backbone of the bottlebrush polymer. The elastic modulus (G' in the order of kPa) was much less than the values found for the entanglement plateau modulus of linear poly(tetrahydrofuran) (in order of MPa). This low modulus value, which exists up to very low frequencies (high temperatures), makes them a good candidate for supersoft elastomers.

9.
ChemSusChem ; 12(5): 990-999, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30637973

ABSTRACT

Enzymatic polymerization provides an excellent opportunity for the conversion of renewable resources into polymeric materials in an effective and sustainable manner. A series of furan-based copolyesters was synthesized with M w ‾ up to 35 kg mol-1 , by using Novozyme 435 as a biocatalyst and dimethyl 2,5-furandicarboxylate (DMFDCA), 2,5-bis(hydroxymethyl)furan (BHMF), aliphatic linear diols, and diacid ethyl esters as monomers. The synthetic mechanism was evaluated by the variation of aliphatic linear monomers and their feed compositions. Interestingly, there was a significant decrease in the molecular weight if the aliphatic monomers were changed from diols to diacid ethyl esters. The obtained copolyesters were thoroughly characterized and compared with their polyester analogs. These findings provide a closer insight into the application of enzymatic polymerization techniques in designing sustainable high-performance polymers.


Subject(s)
Furans/chemistry , Lipase/metabolism , Polyesters/chemistry , Polyesters/chemical synthesis , Chemistry Techniques, Synthetic , Enzymes , Enzymes, Immobilized , Fungal Proteins , Green Chemistry Technology , Molecular Weight , Polymerization , Temperature
10.
ACS Omega ; 3(6): 7077-7085, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-30259005

ABSTRACT

Previously, we have synthesized a diverse range of 2,5-furandicarboxylic acid (FDCA)-based semiaromatic polyamides via enzymatic polymerization. This novel class of polymers are biobased alternatives to polyphthalamides, which are petrol-based semiaromatic polyamides. From a commercial perspective, they have interesting properties as high-performance materials and engineering thermoplastics. It is even more appealing to explore novel FDCA-based polyamides with added functionality, for the development of sustainable functional materials. Here, a set of FDCA-based heteroatom polyamides have been successfully produced via Novozyme 435 (N435)-catalyzed polymerization of biobased dimethyl 2,5-furandicarboxylate with (potentially)heteroatom diamines, namely, 4,9-dioxa-1,12-dodecanediamine (DODA), diethylenetriamine, and 3,3-ethylenediiminopropylamine. We performed the enzymatic polymerization in solution and bulk. The latter approach is more sustainable and results in higher molecular weight products. Among the tested heteroatom diamines, N435 shows the highest catalytic activity toward DODA. Furthermore, we find that all obtained FDCA-based heteroatom polyamides are amorphous materials with a relatively high thermal stability. These heteroatom polyamides display a glass-transition temperature ranging from 41 to 107 °C.

11.
Biomacromolecules ; 16(11): 3674-85, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26418272

ABSTRACT

Furan-2,5-dicarboxylic acid (FDCA)-based furanic-aliphatic polyamides can be used as promising sustainable alternatives to polyphthalamides (semiaromatic polyamides) and be applied as high performance materials with great commercial interest. In this study, poly(octamethylene furanamide) (PA8F), an analog to poly(octamethylene terephthalamide) (PA8T), is successfully produced via Novozym 435 (N435)-catalyzed polymerization, using a one-stage method in toluene and a temperature-varied two-stage method in diphenyl ether, respectively. The enzymatic polymerization results in PA8F with high weight-average molecular weight (M̅(w)) up to 54000 g/mol. Studies on the one-stage enzymatic polymerization in toluene indicate that the molecular weights of PA8F increase significantly with the concentration of N435; with an optimal reaction temperature of 90 °C. The temperature-varied, two-stage enzymatic polymerization in diphenyl ether yields PA8F with higher molecular weights, as compared to the one-stage procedure, at higher reaction temperatures. MALDI-ToF MS analysis suggests that eight end groups are present in the obtained PA8F: ester/amine, ester/ester, amine/amine, acid/amine, ester/acid, acid/acid, ester/amide, and no end groups (cyclic). Compared to PA8T, the obtained PA8F possesses a similar Tg and similar crystal structures, a comparable Td, but a lower Tm.


Subject(s)
Biocompatible Materials/chemistry , Dicarboxylic Acids/chemistry , Furans/chemistry , Nylons/chemistry , Polymers/chemistry , Enzymes, Immobilized , Fungal Proteins , Hot Temperature , Lipase/chemistry , Molecular Weight , Polymerization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...