Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 206: 108310, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38169226

ABSTRACT

Hybanthus enneaspermus (L.)F.Muell. is a highly indispensable medicinal herb yielding L-Dopa, deemed the gold standard drug among the therapeutic options for Parkinson's disease. This investigation is the first attempt to evaluate the eliciting influence of carboxylic acid functionalized multi-walled carbon nanotube (MWCNT-COOH) on the biosynthesis of L-Dopa and on biomass aggregation and antioxidant metabolites in H. enneaspermus cell suspension cultures. Suspension cells were accomplished from friable calli generated from the nodal segments of H. enneaspermus in Murashige and Skoog (MS) liquid medium infused with 2 mg L-1 2, 4-Dichlorophenoxyacetic acid (2, 4-D), and 0.3 mg L-1meta-Topolin (mT). The influence of MWCNTs on L-Dopa synthesis, biomass accumulation, and biochemical parameters was examined on the basis of the exposure time and in a concentration-dependent manner of MWCNTs. The inclusion of 30 mg L-1 MWCNTs increased the biomass and the L-Dopa level by 2.00 and 16.37-folds, respectively, compared with that of the control. Furthermore, the effect of MWCNTs on physiological parameters such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), ascorbate peroxidase (APX), hydrogen peroxide (H2O2), malondialdehyde (MDA) content, 2-diphenylpicrylhydrazyl (DPPH), and ferric-reducing ability of plasma (FRAP) was examined over the elicited cells. Among the antioxidant enzymatic activities, CAT enhanced 8.0 fold compared with that of the control. MDA and DPPH content enhanced 2.60 and 1.12 folds, respectively, compared with that of the control. The current study showed that MWCNTs offer new possibilities for their usage over in vitro by acting as potential innovative plant metabolite elicitors and stress-protecting entities.


Subject(s)
Nanotubes, Carbon , Violaceae , Antioxidants/metabolism , Levodopa , Hydrogen Peroxide/metabolism , Violaceae/chemistry , Violaceae/metabolism
2.
Plants (Basel) ; 12(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37960116

ABSTRACT

Phosphorus deficiency highly interferes with plant growth and development. Plants respond to persistent P deficiency by coordinating the expression of genes involved in the alleviation of stress. Promoters of phosphate transporter genes are a great choice for the development of genetically modified plants with enhanced phosphate uptake abilities, which improve crop yields in phosphate-deficient soils. In our previous study, the sugarcane phosphate transporter PHT1;2 gene showed a significantly high expression under salinity stress. In this study, the Erianthus arundinaceus EaPHT1;2 gene was isolated and characterized using various in silico tools. The deduced 542 amino acid residues have 10 transmembrane domains, with a molecular weight and isoelectric point of 58.9 kDa and 9.80, respectively. They displayed 71-96% similarity with Arabidopsis thaliana, Zea mays, and the Saccharum hybrid. To elucidate the function of the 5' regulatory region, the 1.1 kb promoter was isolated and validated in tobacco transgenics under Pi stress. The EaPHT1;2 promoter activity was detected using a ß-glucuronidase (GUS) assay. The EaPHT1;2 promoter showed 3- to 4.2-fold higher expression than the most widely used CaMV35S promoter. The 5' deletion analysis with and without 5' UTRs revealed a small-sized 374 bp fragment with the highest promoter activity among 5' truncated fragments, which was 2.7 and 4.2 times higher than the well-used CaMV35S promoter under normal and Pi deprivation conditions, respectively. The strong and short promoter of EaPHT1;2 with 374 bp showed significant expression in low-Pi-stress conditions and it could be a valuable source for the development of stress-tolerant transgenic crops.

3.
Genes (Basel) ; 14(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37372327

ABSTRACT

Plant nuclear factor (NF-Y) is a transcriptional activating factor composed of three subfamilies: NF-YA, NF-YB, and NF-YC. These transcriptional factors are reported to function as activators, suppressors, and regulators under different developmental and stress conditions in plants. However, there is a lack of systematic research on the NF-Y gene subfamily in sugarcane. In this study, 51 NF-Y genes (ShNF-Y), composed of 9 NF-YA, 18 NF-YB, and 24 NF-YC genes, were identified in sugarcane (Saccharum spp.). Chromosomal distribution analysis of ShNF-Ys in a Saccharum hybrid located the NF-Y genes on all 10 chromosomes. Multiple sequence alignment (MSA) of ShNF-Y proteins revealed conservation of core functional domains. Sixteen orthologous gene pairs were identified between sugarcane and sorghum. Phylogenetic analysis of NF-Y subunits of sugarcane, sorghum, and Arabidopsis showed that ShNF-YA subunits were equidistant while ShNF-YB and ShNF-YC subunits clustered distinctly, forming closely related and divergent groups. Expression profiling under drought treatment showed that NF-Y gene members were involved in drought tolerance in a Saccharum hybrid and its drought-tolerant wild relative, Erianthus arundinaceus. ShNF-YA5 and ShNF-YB2 genes had significantly higher expression in the root and leaf tissues of both plant species. Similarly, ShNF-YC9 had elevated expression in the leaf and root of E. arundinaceus and in the leaf of a Saccharum hybrid. These results provide valuable genetic resources for further sugarcane crop improvement programs.


Subject(s)
Saccharum , Saccharum/genetics , Saccharum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Genome, Plant , Transcription Factors/genetics
4.
Sci Rep ; 9(1): 8821, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217482

ABSTRACT

Rice is one of the most widely cultivated crops worldwide; however, it is not amenable to genetic manipulations, owing to its poor response to tissue culture and regeneration in vitro. To improve its response to tissue culture, we evaluated the influence of biosynthesized silver nanoparticles on callus induction, regeneration and rhizogenesis in Indica rice cv. IR64. Silver nanoparticles were biosynthesized by using silver nitrate and Parthenium hysterophorus plant extract, and were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, Transmission electron microscopy and X-ray diffraction. The biosynthesized silver nanoparticles (PHAgNPs), when supplemented in tissue culture medium, promoted callus induction frequency, callus regeneration and rhizogenesis at concentrations of 10 mg l -1, 5 mg l-1 and 10 mg l-1, respectively. Further examination of the endogenous hormonal levels in regenerating calli revealed that AgNPs enhanced regeneration by alleviating abscisic acid and ethylene levels in the plant tissue. The stimulatory influence eliciting the regeneration response was found to be optimal with the supplementation of 5 mg l-1 PHAgNPs in the regeneration medium; the malondialdehyde, proline and hydrogen peroxide levels were also lower than those in the control, thus suggesting improved antioxidant status. Our results indicated that biosynthesized PHAgNPs may have the potential to positively influence tissue culture of recalcitrant varieties.


Subject(s)
Hormesis/drug effects , Metal Nanoparticles/chemistry , Oryza/chemistry , Silver/pharmacology , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Oryza/drug effects , Oryza/genetics , Oryza/ultrastructure , Plant Roots/drug effects , Proline/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/drug effects
5.
BMC Genomics ; 19(Suppl 9): 986, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30999852

ABSTRACT

BACKGROUND: Glyoxalase pathway is a reactive carbonyl species (RCS) scavenging mechanism involved in the detoxification of methylglyoxal (MG), which is a reactive α-ketoaldehyde. In plants under abiotic stress, the cellular toxicity is reduced through glyoxalase pathway genes, i.e. Glyoxalase I (Gly I), Glyoxalase II (Gly II) and Glyoxalase III (Gly III). Salinity and water deficit stresses produce higher amounts of endogenous MG resulting in severe tissue damage. Thus, characterizing glyoxalase pathway genes that govern the MG metabolism should provide new insights on abiotic stress tolerance in Erianthus arundinaceus, a wild relative of sugarcane and commercial sugarcane hybrid (Co 86032). RESULTS: In this study, three glyoxalase genes (Glyoxalase I, II and III) from E. arundinaceus (a wild relative of sugarcane) and commercial sugarcane hybrid (Co 86032) were characterized. Comparative gene expression profiles (qRT-PCR) of Glyoxalase I, II and III under salinity and water deficit stress conditions revealed differential transcript expression with higher levels of Glyoxalase III in both the stress conditions. Significantly, E. arundinaceus had a higher expression level of glyoxalase genes compared to commercial sugarcane hybrid. On the other hand, gas exchange parameters like stomatal conductance and transpiration rate were declined to very low levels under both salt and drought induced stresses in commercial sugarcane hybrid when compared to E. arundinaceus. E. arundinaceus maintained better net photosynthetic rate compared to commercial sugarcane hybrid. The phylogenetic analysis of glyoxalase proteins showed its close evolutionary relationship with Sorghum bicolor and Zea mays. Glyoxalase I and II were predicted to possess 9 and 7 isoforms respectively whereas, Glyoxalase III couldn't be identified as it comes under uncharacterized protein identified in recent past. Chromosomal mapping is also carried out for glyoxalase pathway genes and its isoforms. Docking studies revealed the binding affinities of glyoxalase proteins in both E. arundinaceus and commercial sugarcane hybrid with their substrate molecules. CONCLUSIONS: This study emphasizes the role of Glyoxalase pathway genes in stress defensive mechanism which route to benefit in progressive plant adaptations and serves as potential candidates for development of salt and drought tolerant crops.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Lactoylglutathione Lyase/genetics , Plant Proteins/genetics , Saccharum/genetics , Salinity , Signal Transduction , Adaptation, Physiological , Chromosomes, Plant , Computational Biology , Gene Expression Profiling , Saccharum/classification , Saccharum/enzymology , Saccharum/physiology
6.
3 Biotech ; 9(1): 10, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30622848

ABSTRACT

Protein p68 is a prototype constituent of DEAD-box protein family, which is involved in RNA metabolism, induced during abiotic stress conditions. In order to address the salinity stress faced by economically important soybean crop, we have transformed soybean cv. PUSA 9712 via direct organogenesis with marker free construct of p68 gene by Agrobacterium-mediated genetic transformation. The putative transgenic plants were screened by Polymerase chain reaction (PCR), Dot blot analysis and Southern blot hybridization. Reverse transcriptase-PCR (RT-PCR) and Quantitative real-time PCR (qRT-PCR) established that the p68 gene expressed in three out of five southern positive (T1) plants. The transformed (T1) soybean plants survived irrigation upto 200 mM of NaCl whereas the non-transformed (NT) plants could not survive even 150 mM NaCl. The transgenic soybean (T1) plants showed a higher accumulation of chlorophyll, proline, CAT, APX, SOD, RWC, DHAR and MDHAR than the NT plants under salinity stress conditions. The transformed (T1) soybean plants also retained a higher net photosynthetic rate, stomatal conductance and CO2 assimilation as compared to NT plants. Further analysis revealed that (T1) soybean plants accumulated higher K+ and lower Na+ levels than NT plants. Yield performance of transformed soybean plants was estimated in the transgenic green house under salinity stress conditions. The transformed (T1) soybean plants expressing the p68 gene were morphologically similar to non-transformed plants and produced 22-24 soybean pods/plant containing 8-9 g (dry weight) of seeds at 200 mM NaCl concentration. The present investigation evidenced the role of the p68 gene against salinity, by enhancing the tolerance towards salinity stress in soybean plants.

7.
3 Biotech ; 8(4): 202, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29607283

ABSTRACT

Agrobacterium infection and regeneration of the putatively transformed plant from the explant remains arduous for some crop species like peanut. Henceforth, a competent and reproducible in planta genetic transformation protocol is established for peanut cv. CO7 by standardizing various factors such as pre-culture duration, acetosyringone concentration, duration of co-cultivation, sonication and vacuum infiltration. In the present investigation, Agrobacterium tumefaciens strain EHA105 harboring the binary vector pCAMBIA1301-bar was used for transformation. The two-stage selection was carried out using 4 and 250 mg l-1 BASTA® to completely eliminate the chimeric and non-transformed plants. The transgene integration into plant genome was evaluated by GUS histochemical assay, polymerase chain reaction (PCR), and Southern blot hybridization. Among the various combinations and concentrations analyzed, highest transformation efficiency was obtained when the 2-day pre-cultured explants were subjected to sonication for 6 min and vacuum infiltrated for 3 min in Agrobacterium suspension, and co-cultivated on MS medium supplemented with 150 µM acetosyringone for 3 days. The fidelity of the standardized in planta transformation method was assessed in five peanut cultivars and all the cultivars responded positively with a transformation efficiency ranging from minimum 31.3% (with cv. CO6) to maximum 38.6% (with cv. TMV7). The in planta transformation method optimized in this study could be beneficial to develop superior peanut cultivars with desirable genetic traits.

8.
Methods Mol Biol ; 1405: 1-18, 2016.
Article in English | MEDLINE | ID: mdl-26843160

ABSTRACT

Withania somnifera (L.) Dunal is a versatile medicinal plant extensively utilized for production of phytochemical drug preparations. The roots and whole plants are traditionally used in Ayurveda, Unani, and Siddha medicines, as well as in homeopathy. Several studies provide evidence for an array of pharmaceutical properties due to the presence of steroidal lactones named "withanolides." A number of research groups have focused their attention on the effects of biotic and abiotic elicitors on withanolide production using cultures of adventitious roots, cell suspensions, shoot suspensions, and hairy roots in large-scale bioreactor for producing withanolides. This chapter explains the detailed procedures for induction and establishment of hairy roots from leaf explants of W. somnifera, proliferation and multiplication of hairy root cultures, estimation of withanolide productivity upon elicitation with salicylic acid and methyl jasmonate, and quantification of major withanolides by HPLC. The protocol herein described could be implemented for large-scale cultivation of hairy root biomass to improve withanolide production.


Subject(s)
Plant Roots/metabolism , Withania/metabolism , Withanolides/metabolism , Biomass , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Plant Roots/chemistry , Withania/chemistry , Withanolides/chemistry
9.
Plant Biotechnol (Tokyo) ; 33(5): 341-350, 2016.
Article in English | MEDLINE | ID: mdl-31367185

ABSTRACT

Soybean like many other crops, in this genomic era, has well-established genomic database which provides a wide range of opportunities for improvement through genetic manipulation. But the growing demand for soybean transgenics with increased production and improved quality has been handicapped due to inefficient transformation strategies and hence an efficient, stable and reliable transformation system is of prime requisite. In the present study, Agrobacterium-mediated transformation was standardized by refining the glufosinate selection system in terms of dosage (0-6 mg l-1) and degree of exposure. The cotyledonary node explants (with and without wounding) initially cultured on a non-selective shoot induction medium for 10 days before transferring them to the selective SIM with an optimized concentration of 5.0 mg l-1 ammonium glufosinate, showed least selection escape frequency. Wounded cotyledonary node explants infected with Agrobacterium tumefaciens harboring pBIN-bar construct, showed an improved regeneration efficiency of 55.10% and transformation efficiency of 12.6% using Southern blotting in T1 plants. Southern analysis of T1 plants confirmed the integration of bar gene into the genomic DNA and the bar positive T1 plants segregated in 3 : 1 ratio. This is the first report, to our knowledge, of a high transformation efficiency using Agrobacterium-mediated cot node-glufosinate system in an Indian soybean genotype.

10.
Plant Cell Rep ; 34(10): 1835-48, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26152769

ABSTRACT

KEY MESSAGE: An efficient, reproducible, and genotype-independent in planta transformation has been developed for sugarcane using setts as explant. Traditional Agrobacterium-mediated genetic transformation and in vitro regeneration of sugarcane is a complex and time-consuming process. Development of an efficient Agrobacterium-mediated transformation protocol, which can produce a large number of transgenic plants in short duration is advantageous. Hence, in the present investigation, we developed a tissue culture-independent in planta genetic transformation system for sugarcane using setts collected from 6-month-old sugarcane plants. The sugarcane setts (nodal cuttings) were infected with three Agrobacterium tumefaciens strains harbouring pCAMBIA 1301-bar plasmid, and the transformants were selected against BASTA(®). Several parameters influencing the in planta transformation such as A. tumefaciens strains, acetosyringone, sonication and exposure to vacuum pressure, have been evaluated. The putatively transformed sugarcane plants were screened by GUS histochemical assay. Sugarcane setts were pricked and sonicated for 6 min and vacuum infiltered for 2 min at 500 mmHg in A. tumefaciens C58C1 suspension containing 100 µM acetosyringone, 0.1 % Silwett L-77 showed the highest transformation efficiency of 29.6 % (with var. Co 62175). The three-stage selection process completely eliminated the chimeric transgenic sugarcane plants. Among the five sugarcane varieties evaluated using the standardized protocol, var. Co 6907 showed the maximum transformation efficiency (32.6 %). The in planta transformation protocol described here is applicable to transfer the economically important genes into different varieties of sugarcane in relatively short time.


Subject(s)
Agrobacterium tumefaciens/genetics , Plants, Genetically Modified/genetics , Saccharum/genetics , Transformation, Genetic/genetics
11.
PLoS One ; 10(4): e0124693, 2015.
Article in English | MEDLINE | ID: mdl-25927703

ABSTRACT

In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants.


Subject(s)
Agrobacterium/genetics , Sonication , Sulfhydryl Reagents/pharmacology , Transformation, Genetic/genetics , Withania/genetics , Withania/microbiology , Transformation, Genetic/drug effects
12.
Indian J Exp Biol ; 53(3): 177-83, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25872249

ABSTRACT

We studied the influence of sucrose and nitrogen concentration on in vitro flowering and fruit setting in elongated shoots of Withania somnifera. BA (1.5 mg/l) and IAA (0.3 mg/l) on MS medium supplemented with 4% sucrose showed 67% of in vitro flower induction frequency, 9 flowers/shoot, 4 fruits/shoot and 11 seeds/fruit in elongated-shoots. Different concentrations of nitrogen sources (L-glutamine, adenine sulphate, ammonium nitrate, potassium nitrate and sodium nitrate 5-25 mg/l) were tested in combination with 4% sucrose and BA at 1.5 mg/l and IAA at 0.3 mg/l. Highest number of flowers (20 flowers/shoot; 2.2-fold) and fruits (16 fruits/shoot; 3.39-fold), fruit setting (12 seeds/fruit; 1.08-fold) at a higher frequency (88%) were achieved on MS medium augmented with 15 mg/l adenine sulphate with same PGRs and sucrose concentration. The maximum production of withanolide A (0.68 mg/g DW) and withanolide B (0.77 mg/g DW) was recorded in in vitro fruits. Highest accumulation of withaferin A (2 mg/g DW) was quantified from in vitro flowers, whereas, it was low in in vitro fruits (0.49 mg/g DW withaferin A). However, withanone (0.23 mg/g DW) was found accumulated uniformly in both in vitro flowers and fruits compared to control.


Subject(s)
Carbon/metabolism , Culture Media/pharmacology , Flowers/growth & development , Fruit/growth & development , Nitrogen/metabolism , Withania/metabolism , Withanolides/metabolism , Adenine/metabolism , Adenine/pharmacology , Culture Media/chemistry , Flowers/chemistry , Fruit/chemistry , Germination/drug effects , Glutamine/metabolism , Glutamine/pharmacology , Hydroponics , Nitrates/metabolism , Nitrates/pharmacology , Plant Shoots/chemistry , Plant Shoots/growth & development , Sucrose/metabolism , Sucrose/pharmacology , Withania/chemistry , Withania/growth & development
13.
Appl Biochem Biotechnol ; 175(4): 2266-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25480345

ABSTRACT

Soybean is a recalcitrant crop to Agrobacterium-mediated genetic transformation. Development of highly efficient, reproducible, and genotype-independent transformation protocol is highly desirable for soybean genetic improvement. Hence, an improved Agrobacterium-mediated genetic transformation protocol has been developed for cultivar PK 416 by evaluating various parameters including Agrobacterium tumefaciens strains (LBA4404, EHA101, and EHA105 harboring pCAMBIA1304 plasmid), sonication duration, vacuum infiltration pressure, and vacuum duration using cotyledonary node explants of soybean prepared from 7-day-old seedlings. The transformed plants were successfully developed through direct organogenesis system. Transgene expression was assessed by GUS histochemical and gfp visual assays, and integration was analyzed by PCR and Southern blot hybridization. Among the different combinations and durations evaluated, a maximum transformation efficiency of 18.6 % was achieved when the cotyledonary node explants of cv. PK 416 were sonicated for 20 s and vacuum infiltered for 2 min at 250 mmHg in A. tumefaciens EHA105 suspension. The amenability of the standardized protocol was tested on four more soybean cultivars JS 90-41, Hara Soy, Co 1, and Co 2 in which all the cultivars responded favorably with transformation efficiency ranging from 13.3 to 16.6 %. The transformation protocol developed in the present study would be useful to transform diverse soybean cultivars with desirable traits.


Subject(s)
Cotyledon/genetics , Gene Transfer Techniques , Glycine max/genetics , Plants, Genetically Modified , Plasmids/chemistry , Transformation, Genetic , Agrobacterium tumefaciens/genetics , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , India , Kanamycin Kinase/genetics , Kanamycin Kinase/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plasmids/metabolism , Seedlings/genetics , Sonication , Vacuum
14.
PLoS One ; 9(8): e104005, 2014.
Article in English | MEDLINE | ID: mdl-25089711

ABSTRACT

The present study investigated the biosynthesis of major and minor withanolides of Withania somnifera in cell suspension culture using shake-flask culture and bioreactor by exploiting elicitation and precursor feeding strategies. Elicitors like cadmium chloride, aluminium chloride and chitosan, precursors such as cholesterol, mevalonic acid and squalene were examined. Maximum total withanolides detected [withanolide A (7606.75 mg), withanolide B (4826.05 mg), withaferin A (3732.81 mg), withanone (6538.65 mg), 12 deoxy withanstramonolide (3176.63 mg), withanoside IV (2623.21 mg) and withanoside V (2861.18 mg)] were achieved in the combined treatment of chitosan (100 mg/l) and squalene (6 mM) along with 1 mg/l picloram, 0.5 mg/l KN, 200 mg/l L-glutamine and 5% sucrose in culture at 4 h and 48 h exposure times respectively on 28th day of culture in bioreactor. We obtained higher concentrations of total withanolides in shake-flask culture (2.13-fold) as well as bioreactor (1.66-fold) when compared to control treatments. This optimized protocol can be utilized for commercial level production of withanolides from suspension culture using industrial bioreactors in a short culture period.


Subject(s)
Cell Culture Techniques , Withania/metabolism , Withanolides/metabolism , Aluminum Chloride , Aluminum Compounds/pharmacology , Bioreactors , Cadmium Chloride/pharmacology , Chitosan/pharmacology , Chlorides/pharmacology , Cholesterol/metabolism , Culture Media/chemistry , Glutamine/metabolism , Mevalonic Acid/metabolism , Picloram/pharmacology , Squalene/metabolism , Sucrose/metabolism , Withania/drug effects , Withanolides/chemistry , Withanolides/classification
15.
Protoplasma ; 251(5): 1231-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24633328

ABSTRACT

Podophyllum hexandrum Royle known as Indian mayapple is an important medicinal plant found only in higher altitudes (2,700 to 4,200 m) of the Himalayas. The highly valued anticancer drug Podophyllotoxin is obtained from the roots of this plant. Due to over exploitation, this endemic plant species is on the verge of extinction. In vitro culture for efficient regeneration and the production of podophyllotoxin is an important research priority for this plant. Hence, in the present study, an efficient plant regeneration system for mass multiplication through somatic embryogenesis was developed. We have screened P. hexandrum seeds collected from three different regions in the Himalayas to find their regenerative potentials. These variants showed variation in germination percentage as well as somatic embryogenic frequency. The seeds collected from the Milam area of Pithoragarh district showed better germination response (99.3%) on Murashige and Skoog (MS) medium fortified with Gibberellic acid (GA3 [5 mg/l]) and higher direct somatic embryogenic frequency (89.6%). Maximum production of embryogenic callus (1.2 g fresh weight [FW]) was obtained when cotyledons containing the direct somatic embryo clusters were cultured in MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D [1.5 mg/l]) after 4 week of culture in complete darkness. In the present investigation, somatic embryogenesis was accomplished either by direct organogenesis or callus mediated pathways. The latter method resulted in a higher frequency of somatic embryo induction in hormone-free MS medium yielding 47.7 embryos/50 mg of embryogenic callus and subsequent germination in MS medium supplemented with GA3 (5 mg/l). Seventy-nine percent of embryos attained complete maturity and germinated into normal plants with well-developed roots. Systematic histological analysis revealed the origin of somatic embryo and their ontogenesis. The higher level of podophyllotoxin (1.8 mg/g dry weight [DW]) was recorded in germinated somatic embryos when compared to field grown plants. The present system can be widely used for mass propagation, transgenic recovery, and podophyllotoxin production for commercial utilization.


Subject(s)
Plant Somatic Embryogenesis Techniques , Podophyllotoxin/biosynthesis , Podophyllum/embryology , Podophyllum/metabolism , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Endangered Species , Plant Shoots , Regeneration , Seeds/growth & development
16.
Appl Biochem Biotechnol ; 172(4): 1763-76, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24258793

ABSTRACT

Soybean oil contains high levels of tocopherols which are an important source of vitamin E in human diet. The conversion of γ- to α-tocopherol catalyzed by γ-tocopherol methyltransferase (γ-TMT) is found to be the rate limiting factor in soybean which influences the tocopherol composition. Using Agrobacterium-mediated transformation, we overexpressed the γ-TMT gene of Perilla frutescens under the control of the seed-specific promoter vicillin in cultivar Pusa 16. Transgene integration and expression was confirmed in five independently transformed GUS positive soybean plants by polymerase chain reaction (PCR), Southern hybridization, and reverse transcriptase-PCR (RT-PCR). High-performance liquid chromatography (HPLC) analysis showed that overexpression of Pf-γ-TMT resulted in efficient conversion of γ-tocopherol to α-tocopherol and concomitant increase in seed α-tocopherol content in RT-PCR positive plants. The protocol was successfully applied to three more cultivars PK 416, Gujarat soybean 1, and VL soya 1 in which seeds of transformed plants showed elevated level of α-tocopherol than wild-type seeds.


Subject(s)
Gene Expression Regulation, Plant/genetics , Glycine max/enzymology , Glycine max/metabolism , Methyltransferases/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/metabolism , Tocopherols/metabolism , Methyltransferases/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Glycine max/genetics
17.
Protoplasma ; 251(3): 591-601, 2014 May.
Article in English | MEDLINE | ID: mdl-24150424

ABSTRACT

An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.


Subject(s)
DNA, Plant/genetics , Jatropha/genetics , Gene Transfer Techniques , Genetic Vectors , Jatropha/growth & development , Plants, Genetically Modified , Transformation, Genetic
18.
Indian J Exp Biol ; 51(10): 849-59, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24266110

ABSTRACT

Majority of the Indian soybean cultivars are recalcitrant to tissue culture regeneration. The present communication reports the development of somatic embryogenesis in a liquid culture medium from immature cotyledons of G. max. Following induction with 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthalene acetic acid (NAA), the number of somatic embryos and percentage of explants that responded were higher with 45.24 microM 2,4-D. The proliferation of somatic embryos for three successive cycles was achieved in 22.62 microM 2,4-D. Histodifferentiation of somatic embryos under NAA (10.74 microM) indicated that better embryo development and maturation was achieved without any growth regulator. The amino acids such as L-glutamine favoured the somatic embryo induction and histodifferentiation at 20 and 30 mM respectively, where as L-asparagine at 10 mM concentration enhanced the somatic embryo proliferation. In addition, somatic embryos that were desiccated (air-drying method) for 5 days showed better germination (40.88%). The Indian soybean cultivars also showed strict genotypic influence and cv. Pusa 16 was emerged as a best responding cultivar for somatic embryo induction with 74.42% of response.


Subject(s)
Glycine max/embryology , Plant Somatic Embryogenesis Techniques/methods , Acclimatization/drug effects , Acclimatization/physiology , Amino Acids/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cotyledon/drug effects , Cotyledon/growth & development , Cotyledon/physiology , Desiccation , Germination/drug effects , Germination/physiology , Plant Growth Regulators/pharmacology , Glycine max/drug effects , Glycine max/growth & development , Glycine max/physiology
19.
Appl Biochem Biotechnol ; 171(2): 450-68, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23852797

ABSTRACT

An efficient and reproducible in planta transformation method was developed for brinjal using seed as an explant. The brinjal seeds were infected with Agrobacterium tumefaciens EHA 105 harbouring pCAMBIA 1301-bar plasmid, and the transformants were selected against BASTA®. Several parameters influencing the in planta seed transformation such as pre-culture duration, acetosyringone concentration, surfactants, duration of sonication, vacuum pressure and vacuum duration have been evaluated. The putatively transformed (T 0) brinjal plants were screened by GUS histochemical analysis. Among the different combinations and concentrations tested, when the 18-h pre-cultured brinjal seeds were sonicated for 20 min and vacuum infiltered for 3 min at 500 mm of Hg in Agrobacterium suspension containing 100 µM acetosyringone, 0.2 % Silwett L-77 favoured the Agrobacterium infection and showed maximum transformation efficiency. Among the five brinjal varieties evaluated, Arka Samhitha showed maximum transformation efficiency at 45.66 %. The transgene was successfully transmitted to progeny plants (T 1) which was evidenced by GUS histochemical analysis, polymerase chain reaction and Southern hybridisation. The in planta protocol developed in the present study would be beneficial to transfer the economically and nutritionally important genes into different varieties of brinjal, and the transgenic brinjal plants can be produced in less time (approximately 27 days).


Subject(s)
Agrobacterium/genetics , Genetic Engineering/methods , Seeds/genetics , Solanum melongena/genetics , Transformation, Genetic , Acetophenones/pharmacology , Coculture Techniques , Genotype , Germination , Glucuronidase/genetics , Glucuronidase/metabolism , Seeds/growth & development , Solanum melongena/drug effects , Solanum melongena/enzymology , Solanum melongena/growth & development , Sonication , Surface-Active Agents/pharmacology , Time Factors , Transformation, Genetic/drug effects , Transgenes/genetics , Vacuum
20.
Plant Cell Rep ; 32(10): 1557-74, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23749098

ABSTRACT

KEY MESSAGE: An efficient, reproducible and genotype-independent in planta transformation has been standardized for sugarcane using seed as explant. Transgenic sugarcane production through Agrobacterium infection followed by in vitro regeneration is a time-consuming process and highly genotype dependent. To obtain more number of transformed sugarcane plants in a relatively short duration, sugarcane seeds were infected with Agrobacterium tumefaciens EHA 105 harboring pCAMBIA 1304-bar and transformed plants were successfully established without undergoing in vitro regeneration. Various factors affecting sugarcane seed transformation were optimized, including pre-culture duration, acetosyringone concentration, surfactants, co-cultivation, sonication and vacuum infiltration duration. The transformed sugarcane plants were selected against BASTA(®) and screened by GUS and GFP visual assay, PCR and Southern hybridization. Among the different combinations and concentrations tested, when 12-h pre-cultured seeds were sonicated for 10 min and 3 min vacuum infiltered in 100 µM acetosyringone and 0.1 % Silwett L-77 containing Agrobacterium suspension and co-cultivated for 72-h showed highest transformation efficiency. The amenability of the standardized protocol was tested on five genotypes. It was found that all the tested genotypes responded favorably, though CoC671 proved to be the best responding cultivar with 45.4 % transformation efficiency. The developed protocol is cost-effective, efficient and genotype independent without involvement of any tissue culture procedure and can generate a relatively large number of transgenic plants in approximately 2 months.


Subject(s)
Agrobacterium tumefaciens , Genetic Engineering/methods , Saccharum/genetics , Seeds/genetics , Acetophenones/chemistry , DNA, Plant/genetics , Gene Transfer Techniques , Genes, Reporter , Genotype , Plants, Genetically Modified/genetics , Sonication , Surface-Active Agents/chemistry , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...