Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 95(6): 1531-44, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25039218

ABSTRACT

Sexual differences in adult body size (sexual size dimorphism, or SSD) ultimately can be favored by selection because larger males are more likely to be successful competitors for females, because larger females bear larger clutches, or because intersexual size differences reduce resource competition. Natural selection during juvenile development can influence sexual dimorphism of adults, and selection on adults and juveniles may differ. Studies that address the relative contributions of adult body shape dimorphism and sexually dimorphic patterns of growth and maturity are particularly useful in understanding the evolution of size dimorphism, yet they are rare. We investigated three sympatric, congeneric lizard species with different degrees and directions of adult sexual dimorphism and compared their growth patterns, survival probabilities, and intersexual trophic niche differences. Different mechanisms, even within these closely related, sympatric species, acted on juvenile lizards to produce species differences in adult SSD. Both degree and direction of dimorphism resulted from differences between the sexes in either the duration of growth or the rate of growth, but not from differences in rates of survival or selection on juvenile growth rate. Species- and sex-specific trade-offs in the allocation of energy to growth and reproduction, as well as differential timing of maturation, thus caused the growth patterns of the sexes to diverge, producing SSD. The differences that we observed in the direction of SSD among these species is consistent with their different social systems, suggesting that differential selection on adult body size has been responsible for the observed species-specific differences in juvenile growth rates and maturational timing.


Subject(s)
Body Size , Lizards/anatomy & histology , Lizards/physiology , Sex Characteristics , Aging , Animals , Female , Male , Sexual Maturation , Species Specificity
2.
Am Nat ; 177(4): 452-61, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21460567

ABSTRACT

The classic cost-benefit model of ectothermic thermoregulation compares energetic costs and benefits, providing a critical framework for understanding this process (Huey and Slatkin 1976 ). It considers the case where environmental temperature (T(e)) is less than the selected temperature of the organism (T(sel)), and it predicts that, to minimize increasing energetic costs of thermoregulation as habitat thermal quality declines, thermoregulatory effort should decrease until the lizard thermoconforms. We extended this model to include the case where T(e) exceeds T(sel), and we redefine costs and benefits in terms of fitness to include effects of body temperature (T(b)) on performance and survival. Our extended model predicts that lizards will increase thermoregulatory effort as habitat thermal quality declines, gaining the fitness benefits of optimal T(b) and maximizing the net benefit of activity. Further, to offset the disproportionately high fitness costs of high T(e) compared with low T(e), we predicted that lizards would thermoregulate more effectively at high values of T(e) than at low ones. We tested our predictions on three sympatric skink species (Carlia rostralis, Carlia rubrigularis, and Carlia storri) in hot savanna woodlands and found that thermoregulatory effort increased as thermal quality declined and that lizards thermoregulated most effectively at high values of T(e).


Subject(s)
Body Temperature Regulation/physiology , Ecosystem , Hot Temperature , Lizards/physiology , Models, Biological , Adaptation, Physiological , Animals , Circadian Rhythm , Species Specificity , Trees
3.
Proc Natl Acad Sci U S A ; 105(39): 14903-7, 2008 Sep 30.
Article in English | MEDLINE | ID: mdl-18772383

ABSTRACT

Many animals modify their environments, apparently to reduce predation risk, but the success of such endeavors, and their impact on the density and distribution of populations, are rarely rigorously demonstrated. We staged a manipulative experiment to assess the effectiveness of self-made shelters by web spiders as protection from natural enemies. Scincid lizards were included or excluded from 21 replicated 200-m(2) plots, and spiders therein were classified as exposed or sheltered, depending on whether they were uncovered in their web or hidden in cocoons, leaves/debris, or burrows. We found that exposed spiders were greatly affected by the presence of predatory scincid lizards, whereas sheltered spiders were not. More specifically, lizards, which forage close to the ground, reduced the abundance of exposed spiders by two-thirds but had no effect on the abundance of sheltered spiders. Sheltered spiders were able to avoid predation and share space with lizards, suggesting that shelter construction is a mechanism for reducing predation risk and has important population consequences.


Subject(s)
Food Chain , Lizards/physiology , Predatory Behavior , Spiders/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...