Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Metabolites ; 14(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38921476

ABSTRACT

With a rising demand of cocaine over the last years, it is likely that unregulated new psychoactive substances with similar effects such as indatraline ((1R,3S)-3-(3,4-dichlorophenyl)-N-methyl-2,3-dihydro-1H-inden-1-amine) and troparil (Methyl (1R,2S,3S,5S)-8-methyl-3-phenyl-8-azabicyclo[3.2.1]octane-2-carboxylate) become popular as well. Both substances share a similar pharmacological profile as cocaine, while their potency is higher, and their duration of action is longer. This study investigated their metabolic fate in rat urine and incubations using pooled human liver S9 fraction (pHLS9). Indatraline formed two phase I and four phase II metabolites, with aromatic hydroxylation and glucuronidation being the main metabolic steps. All metabolites were detected in rat urine, while the parent compound was not detectable. Although low in abundance, indatraline metabolites were well identifiable due to their specific isotopic patterns caused by chlorine. Troparil formed four phase I and three phase II metabolites, with demethylation being the main metabolic step. Hydroxylation of the tropane ring, the phenyl ring, and combinations of these steps, as well as glucuronidation, were found. Phase I metabolites were detectable in rat urine and pHLS9, while phase II metabolites were only detectable in rat urine.

2.
J Chromatogr A ; 1725: 464930, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38696889

ABSTRACT

Unsuitable sample preparation may result in loss of important analytes and consequently affect the outcome of untargeted metabolomics. Due to species differences, different sample preparations may be required within the same biological matrix. The study aimed to compare the in-house sample preparation method for urine with methods from literature and to investigate the transferability of sample preparation from human urine to rat urine. A total of 12 different conditions for protein precipitation were tested, combining four different extraction solvents and three different reconstitution solvents using an untargeted liquid-chromatography high resolution mass spectrometry (LC-HRMS) metabolomics analysis. Evaluation was done based on the impact on feature count, their detectability, as well as the reproducibility of selected compounds. Results showed that a combination of methanol as extraction and acetonitrile/water (75/25) as reconstitution solvent provided improved results at least regarding the total feature count. Additionally, it was found that a higher amount of methanol was most suitable for extraction of rat urine among the tested conditions. In comparison, human urine requires significantly less volume of extraction solvent. Overall, it is recommended to systematically optimize both, the extraction method, and the reconstitution solvent for the used biofluid and the individual analytical settings.


Subject(s)
Metabolomics , Methanol , Solvents , Animals , Rats , Metabolomics/methods , Humans , Solvents/chemistry , Methanol/chemistry , Reproducibility of Results , Chromatography, Liquid/methods , Acetonitriles/chemistry , Male , Mass Spectrometry/methods , Urine/chemistry , Water/chemistry , Urinalysis/methods
3.
Metabolomics ; 20(3): 49, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689195

ABSTRACT

INTRODUCTION: Untargeted metabolomics studies are expected to cover a wide range of compound classes with high chemical diversity and complexity. Thus, optimizing (pre-)analytical parameters such as the analytical liquid chromatography (LC) column is crucial and the selection of the column depends primarily on the study purpose. OBJECTIVES: The current investigation aimed to compare six different analytical columns. First, by comparing the chromatographic resolution of selected compounds. Second, on the outcome of an untargeted toxicometabolomics study using pooled human liver microsomes (pHLM), rat plasma, and rat urine as matrices. METHODS: Separation and analysis were performed using three different reversed-phase (Phenyl-Hexyl, BEH C18, and Gold C18), two hydrophilic interaction chromatography (HILIC) (ammonium-sulfonic acid and sulfobetaine), and one porous graphitic carbon (PGC) columns coupled to high-resolution mass spectrometry (HRMS). Their impact was evaluated based on the column performance and the size of feature count, amongst others. RESULTS: All three reversed-phase columns showed a similar performance, whereas the PGC column was superior to both HILIC columns at least for polar compounds. Comparing the size of feature count across all datasets, most features were detected using the Phenyl-Hexyl or sulfobetaine column. Considering the matrices, most significant features were detected in urine and pHLM after using the sulfobetaine and in plasma after using the ammonium-sulfonic acid column. CONCLUSION: The results underline that the outcome of this untargeted toxicometabolomic study LC-HRMS metabolomic study was highly influenced by the analytical column, with the Phenyl-Hexyl or sulfobetaine column being the most suitable. However, column selection may also depend on the investigated compounds as well as on the investigated matrix.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Metabolomics , Microsomes, Liver , Rats , Animals , Humans , Metabolomics/methods , Microsomes, Liver/metabolism , Chromatography, Reverse-Phase/methods , Graphite/chemistry , Plasma/chemistry , Plasma/metabolism , Chromatography, Liquid/methods , Porosity , Metabolome
4.
One Health Outlook ; 6(1): 4, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38549118

ABSTRACT

BACKGROUND: Different production systems of livestock animals influence various factors, including the gut microbiota. METHODS: We investigated whether changing the conditions from barns to free-range chicken farming impacts the microbiome over the course of three weeks. We compared the stool microbiota of chicken from industrial barns after introducing them either in community or separately to a free-range environment. RESULTS: Over the six time points, 12 taxa-mostly lactobacilli-changed significantly. As expected, the former barn chicken cohort carries more resistances to common antibiotics. These, however, remained positive over the observed period. At the end of the study, we collected eggs and compared metabolomic profiles of the egg white and yolk to profiles of eggs from commercial suppliers. Here, we observed significant differences between commercial and fresh collected eggs as well as differences between the former barn chicken and free-range chicken. CONCLUSION: Our data indicate that the gut microbiota can undergo alterations over time in response to changes in production systems. These changes subsequently exert an influence on the metabolites found in the eggs. The preliminary results of our proof-of-concept study motivate larger scale observations with more individual chicken and longer observation periods.

5.
Drug Test Anal ; 16(3): 309-313, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37464572

ABSTRACT

New synthetic opioids are an increasing challenge for clinical and forensic toxicologists that developed over the recent years. Desmethylmoramide (DMM), a structural analogue of methadone, is one of the most recent appearances on the drug market. This study investigated its metabolic fate in rat and pooled human liver S9 fraction (pHLS9) to allow the identification of suitable urinary screening targets beyond the parent compound. The analysis of rat urine after the administration of DMM revealed five metabolites, which were the result of pyrrolidine ring or morpholine ring hydroxylation and combinations of them. Additionally, an N',N-bisdesalkyl metabolite was formed. Incubations of DMM using pHLS9 revealed a pyrrolidine hydroxy metabolite, as well as an N-oxide. No Phase II metabolites were detected in either rat urine or incubations using pHLS9. The metabolism of DMM did in part comply with that of its archetype dextromoramide (DXM). Although morpholine ring hydroxylation and N-oxidation were described for DXM and detected for DMM, phenyl ring hydroxylation was not found for DMM but described for DXM. An analysis of 24 h pooled rat urine samples after DMM administration identified the hydroxy and dihydroxy metabolite as the most abundant excretion products, and they may, thus, serve as screening targets, as the parent compound was barely detectable.


Subject(s)
Analgesics, Opioid , Microsomes, Liver , Humans , Rats , Animals , Analgesics, Opioid/metabolism , Chromatography, High Pressure Liquid , Microsomes, Liver/metabolism , Substance Abuse Detection , Morpholines , Pyrrolidines/metabolism
6.
J Anal Toxicol ; 47(9): 818-825, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37864499

ABSTRACT

Hexahydrocannabinol (HHC) is an emerging semi-synthetic cannabinoid, which is obtained from cyclization of cannabidiol and subsequent hydrogenation. As a potentially legal alternative of ∆9-tetrahydrocannabinol (∆9-THC), it is increasingly seized in the USA and Europe. The aims of this study were to investigate the metabolism of HHC in pooled human liver S9 fraction (pHLS9), rat and human samples. Additionally, a locally obtained low-THC cannabis product was investigated, which was advertised with an elevated concentration of HHC. Overall, HHC formed an 11-hydroxy (HO) metabolite, as well as a carboxy metabolite. While only the parent compound was detected in rat urine and feces, the hydroxy metabolite was additionally detected in pHLS9 and human plasma. The carboxy metabolite was only detectable in human plasma. The metabolism corresponded well to that of ∆9-THC, although glucuronidation and the formation of an 8-HO metabolite were not observed. Detectability of HHC and its carboxy metabolite in rat urine was investigated using gas chromatography-mass spectrometry, but neither the parent compound nor the metabolite were detectable. The investigated low-THC cannabis product appeared to be an actual cannabis product since, in addition to HHC, cannabinol, cannabidiol and ∆9-THC were detected after qualitative analysis. Estimation of its content revealed not only 30.6% of HHC but also 4% of ∆9-THC.


Subject(s)
Cannabidiol , Cannabinoids , Hallucinogens , Humans , Rats , Animals , Dronabinol/analysis , Chromatography, High Pressure Liquid , Cannabinoids/analysis , Liver/chemistry
7.
Sci Rep ; 13(1): 7489, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161044

ABSTRACT

Sample preparation in untargeted metabolomics should allow reproducible extractions of as many molecules as possible. Thus, optimizing sample preparation is crucial. This study compared six different extraction procedures to find the most suitable for extracting zebrafish larvae in the context of an infection model. Two one-phase extractions employing methanol (I) and a single miscible phase of methanol/acetonitrile/water (II) and two two-phase methods using phase separation between chloroform and methanol/water combinations (III and IV) were tested. Additional bead homogenization was used for methods III and IV (III_B and IV_B). Nine internal standards and 59 molecules of interest (MoInt) related to mycobacterial infection were used for method evaluation. Two-phase methods (III and IV) led to a lower feature count, higher peak areas of MoInt, especially amino acids, and higher coefficients of variation in comparison to one-phase extractions. Adding bead homogenization increased feature count, peak areas, and CVs. Extraction I showed higher peak areas and lower CVs than extraction II, thus being the most suited one-phase method. Extraction III and IV showed similar results, with III being easier to execute and less prone to imprecisions. Thus, for future applications in zebrafish larvae metabolomics and infection models, extractions I and III might be chosen.


Subject(s)
Methanol , Zebrafish , Animals , Larva , Amino Acids , Water
8.
J Anal Toxicol ; 46(5): 567-572, 2022 May 20.
Article in English | MEDLINE | ID: mdl-34100553

ABSTRACT

Tryptamines represent a group of hallucinogenic new psychoactive substances with increasing prevalence. Unfortunately, only limited data concerning their toxicology and bioanalysis are available as tryptamines are not included in routine screening procedures in many laboratories. In order to expand the current knowledge, we report a non-fatal clinical toxicology case involving the synthetic tryptamine 4-HO-MET (4-hydroxy-N-methyl-N-ethyl-tryptamine, 3-{2-[ethyl(methyl)amino]ethyl}-1H-indol-4-ol, metocin or methylcybin). As only blood of the intoxicated patient was available, our systematic blood plasma screening approaches based on gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC) coupled to low-resolution linear ion trap mass spectrometry (ITMSn) or high-resolution tandem mass spectrometry (HRMS-MS) were conducted. The ingestion of the synthetic tryptamine 4-HO-MET could be revealed by blood plasma analysis using both LC-based systematic screening approaches. However, 4-HO-MET was not detected by GC-MS. Furthermore, the detection of metabolites, which may be used to confirm an intake of the parent compound 4-HO-MET, was only successful using LC-HRMS-MS most probably due to its increased sensitivity compared to LC-ITMSn. A total of four metabolites were detected in blood, including N-demethyl-, oxo- and hydroxy-4-HO-MET, as well as the N-oxide. Finally, LC-HRMS-MS analysis revealed a plasma concentration of 193 ng/mL for 4-HO-MET using the standard addition method. The presented data may help clinical and forensic toxicologists with the interpretation of future cases involving synthetic tryptamines, especially if only blood samples are available.


Subject(s)
Tandem Mass Spectrometry , Tryptamines , Humans , Plasma/metabolism , Tandem Mass Spectrometry/methods
9.
Drug Test Anal ; 13(7): 1440-1444, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33720530

ABSTRACT

Numerous case reports of intoxications with nutmeg seeds (Myristica fragrans, Houtt.) can be found in literature often following their abuse, as psychotropic effects were described after ingestions of large doses. The successful detection of the main ingredients of the nutmeg seeds essential oil elemicin, myristicin, and safrole, as well as their metabolites in human urine by gas chromatography coupled to mass spectrometry (GC-MS) was already described. The aim of this study was to investigate the detectability of the main ingredients of nutmeg seeds and their metabolites in human blood and urine samples using liquid chromatography coupled to linear ion trap mass spectrometry (LC-LIT-MSn ) and liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS/MS) after nutmeg seed abuse. Sample material of three individuals was retrospectively investigated after a systematic screening approach indicated an intoxication with nutmeg seeds as a likely cause of symptoms. Metabolic patterns in plasma and urine using GC-MS were comparable with those described in earlier publications. Investigations using hyphenated liquid chromatography techniques lead to the detection of myristicin and safrole, as well as further metabolites not described using GC-MS and revealed sulfation as an additional Phase II metabolic pathway. These results might help to detect or confirm future intoxications with nutmeg seeds by using LC-MS techniques.


Subject(s)
Myristica/poisoning , Psychotropic Drugs/poisoning , Substance Abuse Detection/methods , Substance-Related Disorders/diagnosis , Allylbenzene Derivatives/analysis , Chromatography, Liquid/methods , Dioxolanes/analysis , Gas Chromatography-Mass Spectrometry , Humans , Mass Spectrometry/methods , Myristica/chemistry , Oils, Volatile/analysis , Psychotropic Drugs/chemistry , Pyrogallol/analogs & derivatives , Pyrogallol/analysis , Retrospective Studies , Safrole/analysis , Seeds
10.
J Anal Toxicol ; 45(2): 195-202, 2021 Feb 13.
Article in English | MEDLINE | ID: mdl-32507893

ABSTRACT

Prerequisites for the reliable identification of substances in terms of forensic and clinical toxicology or doping control include knowledge about their metabolism and their excretion patterns in urine. N-Ethyl-N-propyltryptamine (N-ethyl-N-[2-(1H-indol-3-yl)ethyl]propan-1-amine, EPT) is an N,N-dialkylated tryptamine derivative, sold as new psychoactive substance, and supposed to act as a partial agonist at the 5-HT2A receptor. The aims of the presented study were to elucidate in vitro metabolites of EPT after incubations with pooled human liver S9 fraction (pS9) and in vivo metabolites excreted into rat urine. Finally, suitable analytical target compounds should be identified. Analysis of pS9 incubations using liquid chromatography-high-resolution tandem mass spectrometry revealed EPT metabolites formed after N-dealkylation as well as alkyl and aryl hydroxylation and formation of a hydroxy sulfate. Investigations using rat urine after oral dosing showed that the metabolic pathways of EPT shifted from in vitro hydroxylation of the alkyl amine group to an increased in vivo hydroxylation of the indole ring with several N-dealkyl metabolites. A glucuronic acid conjugate after hydroxylation of the indole ring was additionally found in vivo. The parent compound could not be detected in the rat urine samples. Therefore, analytical methods using mass spectrometry should include hydroxy-EPT and two hydroxy-EPT glucuronide isomers for reliable identification.


Subject(s)
Psychotropic Drugs/analysis , Substance Abuse Detection/methods , Animals , Chromatography, Liquid , Humans , Indoles , Male , Metabolic Networks and Pathways , Rats , Tryptamines
11.
J Anal Toxicol ; 45(9): 1014-1027, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-33048135

ABSTRACT

Flubromazolam is widely known as highly potent designer benzodiazepine (DBZD). Recently, the two flubromazolam-derived new psychoactive substances (NPS) clobromazolam and bromazolam appeared on the drugs of abuse market. Since no information concerning their toxicokinetics in humans is available, the aims of the current study were to elucidate their metabolic profile and to identify the isozymes involved in their phase I and phase II metabolism. In vitro incubations with pooled human liver S9 fraction were performed and analyzed by liquid chromatography coupled to orbitrap-based high-resolution tandem mass spectrometry (LC-HRMS-MS). Biosamples after the ingestion of bromazolam allowed the identification of metabolites in human plasma and urine as well as the determination of bromazolam plasma concentrations by LC-HRMS-MS using the standard addition method. In total, eight clobromazolam metabolites were identified in vitro as well as eight bromazolam metabolites in vitro and in vivo. Predominant metabolic steps were hydroxylation, glucuronidation and combinations thereof. Alpha-hydroxy bromazolam glucuronide and bromazolam N-glucuronide are recommended as screening targets in urine. Bromazolam and its alpha-hydroxy metabolite are recommended if conjugate cleavage is part of the sample preparation procedure. The bromazolam plasma concentrations were determined to be 6 and 29 µg/L, respectively. Several cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) isozymes were shown to catalyze their metabolic transformations. CYP3A4 was involved in the formation of all phase I metabolites of both NPS, while UGT1A4 and UGT2B10 catalyzed their N-glucuronidation. Several UGT isoforms catalyzed the glucuronidation of the hydroxy metabolites. In conclusion, the determined bromazolam plasma concentrations in the low micrograms per liter range underlined the need for sensitive analytical methods and the importance of suitable urine screening procedures including DBZD metabolites as targets. Such an analytical strategy should be also applicable for clobromazolam.


Subject(s)
Benzodiazepines , Designer Drugs , Benzodiazepines/pharmacokinetics , Benzodiazepines/toxicity , Designer Drugs/pharmacokinetics , Designer Drugs/toxicity , Glucuronosyltransferase , Humans , Microsomes, Liver/metabolism , Tandem Mass Spectrometry , Toxicokinetics
12.
Metabolites ; 11(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374857

ABSTRACT

Synthetic cathinones belong to the most often seized new psychoactive substances on an international level. This study investigated the toxicometabolomics, particularly the in vitro metabolism of 2-(methylamino)-1-(4-methylphenyl)-1-pentanone (4-MPD) and 2-(ethylamino)-1-(4-methylphenyl)-1-pentanone (4-MEAP) in pooled human liver microsomes (pHLM) using untargeted metabolomics techniques. Incubations were performed with the substrates in concentrations ranging from 0, 12.5, and 25 µM. Analysis was done by means of high-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS/MS) in full scan only and the obtained data was evaluated using XCMS Online and MetaboAnalyst. Significant features were putatively identified using a separate parallel reaction monitoring method. Statistical analysis was performed using Kruskal-Wallis test for prefiltering significant features and subsequent hierarchical clustering, as well as principal component analysis (PCA). Hierarchical clustering or PCA showed a distinct clustering of all concentrations with most of the features z-scores rising with the concentration of the investigated substances. Identification of significant features left many of them unidentified but revealed metabolites of both 4-MPD and 4-MEAP. Both substances formed carboxylic acids, were hydroxylated at the alkyl chain, and formed metabolites after combined hydroxylation and reduction of the cathinone oxo group. 4-MPD additionally formed a dihydroxy metabolite and a hydroxylamine. 4-MEAP was additionally found reduced at the cathinone oxo group, N-dealkylated, and formed an oxo metabolite. These findings are the first to describe the metabolic pathways of 4-MPD and to extend our knowledge about the metabolism of 4-MEAP. Findings, particularly the MS data of the metabolites, are essential for setting up metabolite-based toxicological (urine) screening procedures.

13.
Metabolites ; 10(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967365

ABSTRACT

The evaluation of liquid chromatography high-resolution mass spectrometry (LC-HRMS) raw data is a crucial step in untargeted metabolomics studies to minimize false positive findings. A variety of commercial or open source software solutions are available for such data processing. This study aims to compare three different data processing workflows (Compound Discoverer 3.1, XCMS Online combined with MetaboAnalyst 4.0, and a manually programmed tool using R) to investigate LC-HRMS data of an untargeted metabolomics study. Simple but highly standardized datasets for evaluation were prepared by incubating pHLM (pooled human liver microsomes) with the synthetic cannabinoid A-CHMINACA. LC-HRMS analysis was performed using normal- and reversed-phase chromatography followed by full scan MS in positive and negative mode. MS/MS spectra of significant features were subsequently recorded in a separate run. The outcome of each workflow was evaluated by its number of significant features, peak shape quality, and the results of the multivariate statistics. Compound Discoverer as an all-in-one solution is characterized by its ease of use and seems, therefore, suitable for simple and small metabolomic studies. The two open source solutions allowed extensive customization but particularly, in the case of R, made advanced programming skills necessary. Nevertheless, both provided high flexibility and may be suitable for more complex studies and questions.

14.
Arch Toxicol ; 94(6): 2047-2059, 2020 06.
Article in English | MEDLINE | ID: mdl-32313995

ABSTRACT

Toxicometabolomics, essentially applying metabolomics to toxicology of endogenous compounds such as drugs of abuse or new psychoactive substances (NPS), can be investigated by using different in vitro models and dedicated metabolomics techniques to enhance the number of relevant findings. The present study aimed to study the toxicometabolomics of the two NPS α-pyrrolidinobutiophenone (1-phenyl-2-(pyrrolidin-1-yl)butan-1-one, α-PBP) and α-pyrrolidinoheptaphenone (1-phenyl-2-(pyrrolidin-1-yl)heptan-1-one, α-PEP, PV8) in HepaRG cell line incubates. Evaluation was performed using reversed-phase and normal-phase liquid chromatography coupled with high-resolution mass spectrometry in positive and negative ionization mode, respectively, to analyze cells and cell media. Statistical evaluation was performed using one-way ANOVA, principal component discriminant function analysis, as well as hierarchical clustering. In general, the analysis of cells did not mainly reveal any features, but the parent compounds of the drugs of abuse. For α-PBP an increase in N-methylnicotinamide was found, which may indicate hepatotoxic potential of the substance. After analysis of cell media, significant features led to the identification of several metabolites of both compounds. Amino acid adducts with glycine and alanine were found, and these have not been described in any study before and are likely to appear in vivo. Additionally, significant changes in the metabolism of cholesterol were revealed after incubation with α-PEP. In summary, the application of metabolomics techniques after HepaRG cells exposure to NPS did not lead to an increased number of identified drug metabolites compared to previously published studies, but gave a wider perspective on the physiological effect of the investigated compounds on human liver cells.


Subject(s)
Alanine/metabolism , Glycine/metabolism , Hepatocytes/metabolism , Metabolomics , Psychotropic Drugs/metabolism , Alanine/analogs & derivatives , Biotransformation , Cell Line , Cholesterol/metabolism , Chromatography, High Pressure Liquid , Glycine/analogs & derivatives , Hepatocytes/drug effects , Humans , Psychotropic Drugs/toxicity , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Toxicokinetics
15.
Metabolomics ; 16(3): 34, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32124055

ABSTRACT

INTRODUCTION: Untargeted metabolomics intends to objectively analyze a wide variety of compounds. Their diverse physicochemical properties make it difficult to choose an appropriate reconstitution solvent after sample evaporation without influencing the chromatography or hamper column sorbent integrity. OBJECTIVES: The study aimed to identify the most appropriate reconstitution solvent for blood plasma samples in terms of feature recovery, four endogenous compounds, and one selected internal standard. METHODS: We investigated several reconstitution solvent mixtures containing acetonitrile and methanol to resolve human plasma extract and evaluated them concerning the peak areas of tryptophan-d5, glucose, creatinine, palmitic acid, and the phophatidylcholine PC(P-16:0/P-16:0), as well as the total feature count RESULTS: Results indicated that acetonitrile containing 30% methanol was best suited to match all tested criteria at least for human blood plasma samples. CONCLUSION: Despite identifying the mixture of acetonitrile and methanol being suitable as solvent for human blood plasma extracts, we recommend to systematically test for an appropriate reconstitution solvent for each analyzed biomatrix.


Subject(s)
Blood Glucose/metabolism , Choline/metabolism , Creatinine/metabolism , Metabolomics , Palmitic Acid/metabolism , Solvents/chemistry , Tryptophan/metabolism , Acetonitriles/chemistry , Choline/analogs & derivatives , Choline/blood , Creatinine/blood , Methanol/chemistry , Palmitic Acid/blood , Tryptophan/blood
16.
J Anal Toxicol ; 44(6): 549-558, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32104896

ABSTRACT

An increasing number of benzodiazepine-type compounds are appearing on the new psychoactive substances market. 8-Chloro-6-(2-fluorophenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine (well known as flualprazolam) represents a potent 'designer benzodiazepine' that has been associated with sedation, loss of consciousness, memory loss and disinhibition. The aims of the present study were to tentatively identify flualprazolam metabolites using in vitro incubations with pooled human liver S9 fraction or HepaRG cells by means of liquid-chromatography-high resolution tandem mass spectrometry. Isozymes involved in phase I and II biotransformation were identified in vitro. Results were then confirmed using human biosamples of an 18-year old male who was admitted to the emergency department after suspected flualprazolam ingestion. Furthermore, the plasma concentration was determined using the standard addition method. Seven flualprazolam metabolites were tentatively identified. Several cytochrome P450 and UDP-glucuronosyltransferase isozymes, amongst them CYP3A4 and UGT1A4, were shown to be involved in flualprazolam biotransformation reactions, and an influence of polymorphisms as well as drug-drug or drug-food interactions cannot be excluded. Alpha-hydroxy flualprazolam glucuronide, 4-hydroxy flualprazolam glucuronide and the parent glucuronide were identified as most abundant signals in urine, far more abundant than the parent compound flualprazolam. These metabolites are thus recommended as urine-screening targets. If conjugate cleavage was performed during sample preparation, the corresponding phase I metabolites should be added as targets. Both hydroxy metabolites can also be recommended for blood screening. The flualprazolam plasma concentration determined in the intoxication case was as low as 8 µg/L underlining the need of analytical methods with sufficient sensitivity for blood-screening purposes.


Subject(s)
Benzodiazepines/metabolism , Toxicokinetics , Adolescent , Benzodiazepines/blood , Benzodiazepines/urine , Biotransformation , Chromatography, Liquid , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Designer Drugs , Glucuronides , Humans , Male , Microsomes, Liver , Substance Abuse Detection , Tandem Mass Spectrometry , Urinalysis
17.
Ther Drug Monit ; 42(1): 93-97, 2020 02.
Article in English | MEDLINE | ID: mdl-31425443

ABSTRACT

PURPOSE: The purpose of this short overview is to summarize and discuss the English-written and PubMed-listed review articles and original studies published between January 2015 and April 2019 on the use of metabolomics techniques for investigating the metabolism of new psychoactive substances (NPS). First, a brief introduction is given on the metabolism of NPS and metabolomics techniques in general. Afterward, the selected original studies are summarized and discussed. Finally, a section dedicated to the studies on NPS beyond metabolism using metabolomics techniques is provided. Thereafter, both sections are concluded and perspectives are given. METHODS: PubMed was searched for English-written literature published between January 1, 2015 and April 1, 2019. RESULTS: The present short overview found that the current use of metabolomics techniques in investigating the metabolism of NPS is rather limited, but these techniques can support and facilitate traditional metabolism studies. CONCLUSIONS: Thus, there may be a certain potential for using metabolomics techniques in the field of NPS research, but a great challenge remains to thoroughly adopt the existing metabolomics methods.


Subject(s)
Metabolomics/methods , Psychotropic Drugs/pharmacokinetics , Psychotropic Drugs/toxicity , Humans
18.
J Anal Toxicol ; 44(2): 156-162, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-31355413

ABSTRACT

The distribution of so-called new psychoactive substances (NPS) as substitute for common drug of abuse was steadily increasing in the last years, but knowledge about their toxicodynamic and toxicokinetic properties is lacking. However, a comprehensive knowledge of their toxicokinetics, particularly their metabolism, is crucial for developing reliable screening procedures and to verify their intake, e.g., in case of intoxications. The aim of this study was therefore to tentatively identify the metabolites of the methylphenidate-derived NPS isopropylphenidate (isopropyl 2-phenyl-2-(2-piperidyl) acetate, IPH), 4-fluoromethylphenidate (methyl 2-(4-fluorophenyl)-2-(piperidin-2-yl) acetate, 4-FMPH) and 3,4-dichloromethylphenidate (methyl 2-(3,4-dichlorophenyl)-2-(piperidin-2-yl) acetate, 3,4-CTMP) using different in vivo and in vitro techniques and ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS/MS). Urine samples of male rats were analyzed, and the transfer to human metabolism was done by using pooled human S9 fraction (pS9), which contains the microsomal fraction of liver homogenisate as well as its cytosol. UHPLC-HRMS/MS analysis of rat urine revealed 17 metabolites for IPH (14 phase I and 3 phase II metabolites), 13 metabolites were found for 4-FMPH (12 phase I metabolites and 1 phase II metabolite) and 7 phase I metabolites and no phase II metabolites were found for 3,4-CTMP. pS9 incubations additionally indicated that all investigated substances were primarily hydrolyzed, resulting in the corresponding carboxy metabolites. Finally, these carboxy metabolites should be used as additional analytical targets besides the parent compounds for comprehensive mass spectrometry-based screening procedures.


Subject(s)
Methylphenidate/metabolism , Psychotropic Drugs/metabolism , Animals , Chromatography, Liquid , Designer Drugs/metabolism , Humans , Male , Rats , Substance Abuse Detection , Tandem Mass Spectrometry , Toxicokinetics
19.
Drug Test Anal ; 12(1): 145-151, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31667988

ABSTRACT

The aim of this study was to characterize the in vitro and in vivo metabolism of 2-aminoindane (2,3-dihydro-1H-inden-2-amine, 2-AI), and N-methyl-2-aminoindane (N-methyl-2,3-dihydro-1H-inden-2-amine, NM-2-AI) after incubations using pooled human liver microsomes (pHLMs), pooled human liver S9 fraction (pS9), and rat urine after oral administration. After analysis using liquid chromatography coupled to high-resolution mass spectrometry, pHLM incubations revealed that 2-AI was left unmetabolized, while NM-2-AI formed a hydroxylamine and diastereomers of a metabolite formed after hydroxylation in beta position. Incubations using pS9 led to the formation of an acetyl conjugation in the case of 2-AI and merely a hydroxylamine for NM-2-AI. Investigations on rat urine showed that 2-AI was hydroxylated also forming diasteromers as described for NM-2-AI or acetylated similar to incubations using pS9. All hydroxylated metabolites of NM-2-AI except the hydroxylamine were found in rat urine as additional sulfates. Assuming similar patterns in humans, urine screening procedures might be focused on the parent compounds but should also include their metabolites. An activity screening using human recombinant N-acetyl transferase (NAT) isoforms 1 and 2 revealed that 2-AI was acetylated exclusively by NAT2, which is polymorphically expressed.


Subject(s)
Designer Drugs/metabolism , Indans/metabolism , Microsomes, Liver/metabolism , Psychotropic Drugs/metabolism , Animals , Designer Drugs/pharmacokinetics , Humans , Indans/urine , Mass Spectrometry , Metabolic Networks and Pathways , Methylation , Psychotropic Drugs/urine , Rats , Substance Abuse Detection
20.
Talanta ; 204: 677-684, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31357352

ABSTRACT

Paper spray mass spectrometry (PSMS) is currently used in different analytical fields, but less effort has been made so far to use PSMS for highly polar compounds. Such analytes usually show poor performance in PSMS due to their high affinity for common paper substrates in addition to high matrix effects. In this study, strategies for hydrophobic modifications of commercially available paper substrates using ten different organosilanes were developed. The modified substrates were generated, characterized, and applied for PSMS analysis of polar toxins. By using the modified paper, PSMS performance of some of the toxins could be considerably increased, especially for orellanine, showing a more than 80-fold signal enhancement when substrates modified with chlorotrimethylsilane were used. For other toxins like ricinine, only small beneficial effects could be shown on PSMS performance when using modified substrates. Statistical equivalence tests showed sufficient ruggedness of the developed procedures also compared to conventional substrates. Thus, further systematic development of paper substrates modified with organosilane derivatives based on the presented study for application in PSMS should be encouraged.

SELECTION OF CITATIONS
SEARCH DETAIL
...