Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Braz J Microbiol ; 53(2): 557-564, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35303296

ABSTRACT

Salmonella Typhimurium is a pathogen of clinical relevance and a model of study in host-pathogen interactions. The virulence and stress-related periplasmic protein VisP is important during S. Typhimurium pathogenesis. It supports bacteria invading host cells, surviving inside macrophages, swimming, and succeeding in murine colitis model, O-antigen assembly, and responding to cationic antimicrobial peptides. This study aimed to investigate the role of the O-antigen molecular ruler WzzST and the periplasmic protein VisP in swarming motility and osmotic stress response. Lambda red mutagenesis was performed to generate single and double mutants, followed by swarming motility, qRT-PCR, Western blot, and growth curves. Here we demonstrate that the deletion of visP affects swarming under osmotic stress and changes the expression levels of genes responsible for chemotaxis, flagella assembly, and general stress response. The deletion of the gene encoding for the O-antigen co-polymerase wzzST increases swarming motility but not under osmotic stress. A second mutation in O-antigen co-polymerase wzzST in a ΔvisP background affected gene expression levels. The ΔvisP growth was affected by sodium and magnesium levels on N-minimum media. These data indicate that WzzST has a role in swarming the motility of S. Typhimurium, as the VisP is involved in chemotaxis and osmotic stress, specifically in response to MgCl2 and NaCl.


Subject(s)
O Antigens , Salmonella typhimurium , Animals , Bacterial Proteins/metabolism , Chemotaxis/genetics , Flagella/physiology , Mice , O Antigens/genetics , O Antigens/metabolism , Osmoregulation
2.
Infect Immun ; 86(8)2018 08.
Article in English | MEDLINE | ID: mdl-29866904

ABSTRACT

Salmonella enterica serovars are associated with diarrhea and gastroenteritis and are a helpful model for understanding host-pathogen mechanisms. Salmonella enterica serovar Typhimurium regulates the distribution of O antigen (OAg) and presents a trimodal distribution based on Wzy polymerase and the WzzST (long-chain-length OAg [L-OAg]) and WzzfepE (very-long-chain-length OAg [VL-OAg]) copolymerases; however, several mechanisms regulating this process remain unclear. Here, we report that LPS modifications modulate the infectious process and that OAg chain length determination plays an essential role during infection. An increase in VL-OAg is dependent on Wzy polymerase, which is promoted by a growth condition resembling the environment of Salmonella-containing vacuoles (SCVs). The virulence- and stress-related periplasmic protein (VisP) participates in OAg synthesis, as a ΔvisP mutant presents a semirough OAg phenotype. The ΔvisP mutant has greatly decreased motility and J774 macrophage survival in a colitis model of infection. Interestingly, the phenotype is restored after mutation of the wzzST or wzzfepE gene in a ΔvisP background. Loss of both the visP and wzzST genes promotes an imbalance in flagellin secretion. L-OAg may function as a shield against host immune systems in the beginning of an infectious process, and VL-OAg protects bacteria during SCV maturation and facilitates intramacrophage replication. Taken together, these data highlight the roles of OAg length in generating phenotypes during S Typhimurium pathogenesis and show the periplasmic protein VisP as a novel protein in the OAg biosynthesis pathway.


Subject(s)
Bacterial Proteins/metabolism , O Antigens/metabolism , Salmonella Infections/microbiology , Salmonella Infections/pathology , Salmonella typhimurium/metabolism , Animals , Bacterial Load , Cell Line , Colitis/microbiology , Colitis/pathology , Disease Models, Animal , Feces/microbiology , Female , Macrophages/immunology , Macrophages/microbiology , Mice, Inbred C57BL , Microbial Viability , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...