Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 3289809, 2022.
Article in English | MEDLINE | ID: mdl-35965768

ABSTRACT

Coronavirus took the world by surprise and caused a lot of trouble in all the important fields in life. The complexity of dealing with coronavirus lies in the fact that it is highly infectious and is a novel virus which is hard to detect with exact precision. The typical detection method for COVID-19 infection is the RT-PCR but it is a rather expensive method which is also invasive and has a high margin of error. Radiographies are a good alternative for COVID-19 detection given the experience of the radiologist and his learning capabilities. To make an accurate detection from chest X-Rays, deep learning technologies can be involved to analyze the radiographs, learn distinctive patterns of coronavirus' presence, find these patterns in the tested radiograph, and determine whether the sample is actually COVID-19 positive or negative. In this study, we propose a model based on deep learning technology using Convolutional Neural Networks and training it on a dataset containing a total of over 35,000 chest X-Ray images, nearly 16,000 for COVID-19 positive images, 15,000 for normal images, and 5,000 for pneumonia-positive images. The model's performance was assessed in terms of accuracy, precision, recall, and F1-score, and it achieved 99% accuracy, 0.98 precision, 1.02 recall, and 99.0% F1-score, thus outperforming other deep learning models from other studies.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , COVID-19/diagnostic imaging , Humans , Neural Networks, Computer , X-Rays
2.
J Healthc Eng ; 2022: 7853604, 2022.
Article in English | MEDLINE | ID: mdl-35859929

ABSTRACT

These days, mobile computing devices are ubiquitous and are widely used in almost every facet of daily life. In addition, computing and the modern technologies are not really coexisting anymore. With a wide range of conditions and areas of concern, the medical domain was also concerned. New types of technologies, such as context-aware systems and applications, are constantly being infused into the medicine field. An IoT-enabled healthcare system based on context awareness is developed in this work. In order to collect and store the patient data, smart medical devices are employed. Context-aware data from the database includes the patient's medical records and personal information. The MRIPPER (Modified Repeated Incremental Pruning to Produce Error) technique is used to analyze and classify the data. A rule-based machine learning method is used in this algorithm. The rules for analyzing datasets in order to make predictions about heart disease are framed using this algorithm. MATLAB is used to simulate the proposed model's performance analysis. Other models like random forest, J48, CART, JRip, and OneR algorithms are also compared to validate the proposed model's performance. The proposed model obtains 98.89 percent accuracy, 96.76 percent precision, 99.05 percent sensitivity, 94.35 percent specificity, and 97.60 percent f-score. Predictions for subjects in the normal and abnormal classes were both accurate with 97.38 for normal and 97.93 for abnormal subjects.


Subject(s)
Algorithms , Heart Diseases , Databases, Factual , Heart Diseases/diagnostic imaging , Humans , Machine Learning
3.
Sensors (Basel) ; 22(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35062437

ABSTRACT

Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient's body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.


Subject(s)
Heart Diseases , Internet of Things , Artificial Intelligence , Delivery of Health Care , Heart Diseases/diagnostic imaging , Humans , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...