Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 410: 135406, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36610087

ABSTRACT

Despite the phenolic acids' health benefits, their interactions with proteins are still unclear. In this study, the interactions of Bovine Serum Albumin (BSA) with chlorogenic acid (CHA), caffeic acid (CA), and their Al3+, Cu2+ complexes were studied by using circular dichroism (CD) spectroscopy, fluorescence spectroscopy, and UV/Vis spectroscopy. It was found that esterification of carboxyl group of CA with quinic acid increased the binding affinities for BSA. After chelating with Cu2+ and Al3+, both CHA and CA exhibited high binding affinities for BSA. CHA could form CHA-Cu2 and CHA-Al2 complex with Cu2+ and Al3+. The result of CD spectroscopy demonstrated that the binding of CHA and Al3+ with BSA contributed to the folding of BSA secondary structure. In addition, with the presence of CHA, binding with Al3+ could also induce changes in BSA conformation. The binding sites of both CHA and CA were closed to Trp213.


Subject(s)
Chlorogenic Acid , Serum Albumin , Serum Albumin/metabolism , Protein Binding , Circular Dichroism , Binding Sites , Serum Albumin, Bovine/chemistry , Protein Structure, Secondary , Spectrometry, Fluorescence/methods , Caffeic Acids/chemistry , Spectrophotometry, Ultraviolet/methods , Thermodynamics
2.
Bioresour Technol ; 291: 121883, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31387052

ABSTRACT

In this study, the interactive effect of plant hormone-salicylic acid and succinic acid on biomass growth, lutein content, and productivity of Desmodesmus sp. F51 were investigated. The results demonstrated that the synergistic action of salicylic acid and succinic acid could effectively enhance the assimilation of nitrate and significantly improve lutein production. The maximal lutein content 7.01 mg/g and productivity 5.11 mg/L/d could be obtained with a supplement of 100 µM salicylic acid and 2.5 mM succinic acid in batch culture. Furthermore, operation strategy of nitrate fed-batch coupled with supplementation for succinic acid and salicylic acid resulted in further enhancement of lutein content and productivity by 7.50 mg/g and 5.78 mg/L/d, respectively. The performance is better than most of the previously reported values.


Subject(s)
Biomass , Lutein/biosynthesis , Nitrates/pharmacology , Plant Growth Regulators/pharmacology
3.
Enzyme Microb Technol ; 125: 45-52, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30885324

ABSTRACT

Xanthophyllomyces dendrorhous is an excellent industrial source for production of natural astaxanthin, but the yield of astaxanthin is relative low due to the contradiction between biomass weight and astaxanthin accumulation. Glutamate, a metabolite connecting nitrogen and carbon metabolisms, is probably a promising entry point to interfere cellular metabolisms. Thus, the effect of glutamate on cell growth and astaxanthin accumulation in X. dendrorhous was investigated. Results showed that glutamate feeding facilitated glucose consumption and further led to the increment of astaxanthin content with little influence of cell growth. A comparative proteomics study was applied to decipher the regulatory mechanisms of enhanced astaxanthin biosynthesis in X. dendrorhous as a response to the glutamate feeding. The expressions of proteins with the highest degree of fold change were involved in carbohydrate, amino acids, and carotenogenesis metabolisms as well as redox and stress-associated metabolisms. In addition, a possible regulatory model of enhanced astaxanthin accumulation in response to glutamate feeding in X. dendrorhous is also proposed.


Subject(s)
Basidiomycota/metabolism , Glutamic Acid/metabolism , Amino Acids/metabolism , Basidiomycota/growth & development , Biomass , Carbohydrate Metabolism/drug effects , Carotenoids/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Fungal/drug effects , Glucose/metabolism , Glutamic Acid/pharmacology , Metabolic Networks and Pathways , Models, Biological , Oxidation-Reduction/drug effects , Proteomics , Stress, Physiological/drug effects , Xanthophylls/biosynthesis , Xanthophylls/metabolism
4.
Bioresour Technol ; 255: 293-301, 2018 May.
Article in English | MEDLINE | ID: mdl-29422330

ABSTRACT

Arthrospira (Spirulina) platensis is known to have high-quality proteins content and phycocyanin as one of the major pigment constituents of the cells, and the most challenging problem associated with phycocyanin production in Arthrospira is to optimize its intracellular accumulation. The present study evaluated the metabolic stress conditions (by nutrient enrichment) of Arthrospira platensis FACHB-314 for boosting biomass growth and high content phycocyanin accumulation. Experimental results showed that 5 mM sodium glutamate and 7.5 mM succinic acid could enhance biomass yield as well as phycocyanin accumulation compared with that of the control groups. The present study demonstrates that the biomass growth and phycocyanin accumulation were significantly enhanced in fed-batch cultivation of Arthrospira platensis by applying the substrates as metabolic stress agents combined with nitrate feeding strategy. cobA/hemD, hemG and ho genes presented the over-expression level with adding sodium glutamate and succinic acid in cultures, respectively, compared to the control groups.


Subject(s)
Phycocyanin , Spirulina , Biomass , Nitrates , Stress, Physiological
5.
Bioresour Technol ; 245(Pt A): 386-393, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28898835

ABSTRACT

Heterotrophic microalgae, capable of converting organic carbons to biofuel, as well as assimilating nutrients, have a great prospective in wastewater treatment. Meanwhile, the knowledge about heterotrophic microalgae is still far less than the autotrophic conterpart. Hence, in this study, 20 heterotrophic microalgal strains were isolated from a domestic wastewater treatment plant, and identified according to morphology and partial 18S and 23S rRNA gene sequences. Further, their biological traits were assessed in terms of N, P, TOC removal efficiencies, growth parameters, self-settleability and lipids production, expressed through a comprehensive selection index. By such, the optimal strains were chosen and applied back to treat the real wastewater, with or without pretreatment of sterilization. An organic-adaptable strain, i.e., Botryococcus sp. NJD-1, was ultimately recommended to achieve the concurrent biofuel production (up to 61.7% lipid content) and pollutants removal (up to 64.5%, 89.8% and 67.9% for N, P and TOC) in pristine wastewater.


Subject(s)
Biofuels , Microalgae , Wastewater , Biomass , Lipids , Microbiota , Prospective Studies
6.
Biotechnol Biofuels ; 9: 47, 2016.
Article in English | MEDLINE | ID: mdl-26925164

ABSTRACT

BACKGROUND: Nowadays, bioflocculation is considered as a potential technology that could be able to alleviate microalgae dewatering cost regarded as the cornerstone hindrance of their full-scale application. However, most bioflocculation studies reported are laboratory scales. This study examined a pilot-scale and in situ flocculation of freshwater microalgae Desmodesmus brasiliensis by microbial bioflocculant. Biochemical composition of microalgal biomass was analyzed to evaluate the applicability of bioflocculation for microalgae-based biofuel production. RESULTS: The flocculation efficiency >98 % was achieved at both pilot-scale and in situ treatment. Bioflocculation is simple, effective, economic, and environmentally friendly. Even though total proteins recovered from biomass harvested by centrifugation and that harvested by bioflocculation were significantly different, there was no significant difference in total carbohydrates and total lipids recovered from either biomass harvested by centrifugation or biomass harvested by bioflocculation. CONCLUSION: The results herein presented, doubtlessly demonstrated that the γ-PGA bioflocculant produced by Bacillus licheniformis CGMCC 2876 is applicable for commercial-scale microalgae harvesting. In addition, bioflocculation process cost could greatly be reduced by in situ operation as no investment cost is needed for a separate flocculation tank and mixing device. Furthermore, bioflocculation method developed is a worthy microalgae harvesting method for algal-based biofuel production.Graphical abstractThe addition of bioflocculant to microalgae cultures followed by mixing elicits, the formation of heavy flocs which settle out by gravity sedimentation in a relatively short settling time.

SELECTION OF CITATIONS
SEARCH DETAIL
...