Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 169321, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38103607

ABSTRACT

Epiphytic and superficial sediment biofilm-dwelling microbial communities play a pivotal role in water quality regulation and biogeochemical cycling in shallow lakes. However, the interactions are far from clear between water physicochemical parameters and microbial community on aquatic plants and in surface sediments of lake in trophic agriculture area. This study employed Illumina sequencing, Partial Least Squares Path Modeling (PLS-PM), and physico-chemical analytical methods to explore the interactions between water quality and microbes (bacteria and eukaryotes) in three substrates of trophic shallow Lake Cyohoha North, Rwanda. The Lake Cyohoha was significantly polluted with total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (NO3-N), and ammonia nitrogen (NH3-N) in the wet season compared to the dry season. PLS-PM revealed a strong positive correlation (+0.9301) between land use types and physico-chemical variables in the rainy season. In three substrates of the trophic lake, Proteobacteria, Cyanobacteria, Firmicutes, and Actinobacteria were dominant phyla in the bacterial communities, and Rotifers, Platyhelminthes, Gastrotricha, and Ascomycota dominated in microeukaryotic communities. As revealed by null and neutral models, stochastic processes predominantly governed the assembly of bacterial and microeukaryotic communities in biofilms and surface sediments. Network analysis revealed that the microbial interconnections in Ceratophyllum demersum were more stable and complex compared to those in Eichhornia crassipes and sediments. Co-occurrence network analysis (|r| > 0.7, p < 0.05) revealed that there were complex interactions among physicochemical parameters and microbes in epiphytic and sediment biofilms, and many keystone microbes on three substrates played important role in nutrients removal, food web and microbial community stable. These findings emphasize that eutrophic water influence the structure, composition, and interactions of microbes in epiphytic and surface sediment biofilms, and provided new insights into the interconnections between water quality and microbial community in presentative substrates in tropical lacustrine ecosystems in agriculturally polluted areas. The study provides useful information for water quality protection and aquatic plants restoration for policy making and catchment management.


Subject(s)
Cyanobacteria , Microbiota , Lakes/microbiology , Water Quality , Biofilms , Nitrogen , Geologic Sediments/microbiology , China
2.
Environ Res ; 224: 115547, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36822529

ABSTRACT

Submerged macrophytes provide niches for epiphytic microbes (including aerobic methanotrophs) growth. However, little is known about the impacts of submerged macrophytes growth status and nutrients loadings on methanotroph community and methane release in wetlands. In the present study, methane fluxes, bacterial and methanotroph community in epiphytic biofilm, and environmental parameters were investigated during Vallisneria natans senescence in wetlands under low (VnL) and high (VnH) nutrients for seven weeks. Relative conductivity and concentration of H2O2, total chlorophyll and malondialdehyde were higher in leaves of V. natans in VnH than VnL at the same sampling time. Nutrients loading increased methane fluxes in treatments with or without (Control) macrophytes, while healthy V. natans plants reduced the methane flux and nutrients concentration in water columns. CH4 fluxes were positively correlated to temperature and COD (p < 0.05). Methane oxidation rates were 3.04-31.68 µmol methane mg-1 fresh weight of V. natans leaves - epiphytic biofilm within 1 h. Proteobacteria, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Actinobacteria and Acidobacteria were dominant phylum in all epiphytic biofilms. The mean abundances of pmoA/16S rRNA were higher in VnL than VnH. According to Illumina sequencing results of pmoA gene, γ-proteobacteria and α-proteobacteria were the dominant methanotroph class in epiphytic biofilm from VnH and VnL, respectively. Among seven detected methanotrophic genera, Methylomonas was significantly higher in VnH than VnL. Network analysis revealed that there were much closer relationships between the environmental parameters and epiphytic bacterial community in VnH than in VnL. COD and MDA were negatively correlated with Methyloglobulus, Methylosarcina, Methylobacter and Methylocystis, but positively correlated with Methylomonas and Methylosinus. This study highlights that methanotrophs in epiphytic biofilm play important roles in methane-oxidizing, which can be affected by plant physiological status and environmental parameters.


Subject(s)
Cyanobacteria , Wetlands , RNA, Ribosomal, 16S , Hydrogen Peroxide , Nutrients , Methane
3.
Sci Total Environ ; 856(Pt 1): 159008, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36162586

ABSTRACT

The occurrence of antibiotics such as erythromycin (ERY) under macrolide group, has long been acknowledged for negatively affecting ecosystems in freshwater environments. However, the effects of ERY on water quality and microbial communities in epiphytic biofilms are poorly understood. Here, Scanning Electron Microscopy (SEM), High-throughput sequencing, and physicochemical analytical methods were employed to unravel the impact of ERY on the water quality and bacterial morphology, biodiversity, composition, interaction, and ecological function in epiphytic biofilms attached to Vallisneria natans and artificial plants in mesocosmic wetlands. The study showed that ERY exposure significantly impaired the nutrient removal capacity (TN, TP, and COD) and altered the epiphytic bacterial morphology of V. natans and artificial plants. ERY did not affect the bacterial α-diversity. Notwithstanding ERY decreased the bacterial composition, but the relative abundance of Proteobacteria and Patescibacteria spiked by 62.2 % and 54 %, respectively, in V. natans, while Desulfobacteria and Chloroflexi increased by 8.9 % and 11.2 %, respectively, in artificial plants. Notably, ERY disturbed the food web structure and metabolic pathways such as carbohydrate metabolism, amino acid metabolism, energy metabolism, cofactor and vitamin metabolism, membrane transport, and signal transduction. This study revealed that ERY exposure disrupted the bacterial morphology, composition, interaction or food web structure, and metabolic functions in epiphytic biofilm. These data underlined that ERY negatively impacts epiphytic bacterial communities and nutrient removal in wetlands.


Subject(s)
Hydrocharitaceae , Microbiota , Erythromycin , Wetlands , Water Quality , Hydrocharitaceae/microbiology , Bacteria , Biofilms , Anti-Bacterial Agents/pharmacology
4.
J Hazard Mater ; 436: 129066, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739691

ABSTRACT

In this study, Vallisneria natans plants were exposed to 5 and 20 nm of titanium dioxide nanoparticles (TiO2 NPs) anatase and 600-1000 nm of bulk at 5 and 20 mg/L for 30 days. SEM images and EDX spectra revealed that epiphytic biofilms were more prone to TiO2 NPs adhesion than bare plant leaves. TiO2 NPs injured plant leaf cells, ruptured epiphytic diatoms membranes and increased the ratio of free-living microbes. The TN, NH4⁺-N and NO3--N concentrations significantly decreased, respectively, by 44.9%, 33.6%, and 23.6% compared to bulk treatments after 30 days due to macrophyte damage and a decline in diversity of epiphytic bacterial community and abundance of nitrogen cycle bacteria. TiO2 NPs size-dependent decrease in bacterial relative abundance was detected, including phylum Cyanobacteria, Planctomycetes, and Verrucomicrobia. Although TiO2 NPs increased eukaryotic diversity and abundance, abundances of Bacillariophyceae and Vampyrellidae classes and Gastrotricha and Phragmoplastophyta phylum decreased significantly under TiO2 NPs exposure compared to bulk and control. TiO2 NPs reduced intensities of interaction relationships among epiphytic microbial genera. This study shed new light on the potential effects of TiO2 NPs toxicity toward aquatic plants and epiphytic microbial communities and its impacts on nitrogen species removal in wetlands.


Subject(s)
Cyanobacteria , Hydrocharitaceae , Nitrogen/pharmacology , Titanium/toxicity
5.
Sci Total Environ ; 808: 151821, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34808175

ABSTRACT

Microbial communities in epiphytic biofilms and surface sediments play a vital role in the biogeochemical cycles of the major chemical elements in freshwater. However, little is known about the diversity, composition, and ecological functions of microbial communities in shallow tropical lakes dominated by aquatic macrophytes. In this study, epiphytic bacterial and eukaryotic biofilm communities on submerged and floating macrophytes and surface sediments were investigated in Lake Rumira, Rwanda in August and November 2019. High-throughput sequencing data revealed that members of the phyla, including Firmicutes, Proteobacteria, Cyanobacteria, Actinobacteria, Chloroflexi, Bacteriodetes, Verrumicrobia, and Myxomycota, dominated bacterial communities, while the microeukaryotic communities were dominated by Unclassified (uncl) SAR(Stramenopiles, Alveolata, Rhizaria), Rotifers, Ascomycota, Gastrotricha, Platyhelminthes, Chloroplastida, and Arthropoda. Interestingly, the eukaryotic OTUs (operational taxonomic units) number and Shannon indices were significantly higher in sediments and epiphytic biofilms on Eicchornia crassipes than Ceratophyllum demersum (p < 0.05), while no differences were observed in bacterial OTUs number and Shannon values among substrates. Redundancy analysis (RDA) showed that water temperature, pH, dissolved oxygen (DO), total nitrogen (TN), and electrical conductivity (EC) were the most important abiotic factors closely related to the microbial community on C. demersum and E. crassipes. Furthermore, co-occurrence networks analysis (|r| > 0.7, p < 0.05) and functional prediction revealed more complex interactions among microbes on C. demersum than on E. crassipes and sediments, and those interactions include cross-feeding, parasitism, symbiosis, and predatism among organisms in biofilms. These results suggested that substrate-type and environmental factors were the strong driving forces of microbial diversity in epiphytic biofilms and surface sediments, thus shedding new insights into microbial community diversity in epiphytic biofilms and surface sediments and its ecological role in tropical lacustrine ecosystems.


Subject(s)
Lakes , Microbiota , Bacteria/genetics , Biofilms , Eukaryota , Geologic Sediments
6.
J Hazard Mater ; 417: 126148, 2021 09 05.
Article in English | MEDLINE | ID: mdl-34229400

ABSTRACT

The fate of antibiotics and their impact on antibiotic resistance genes (ARGs) and microbial communities are far from clear in wetlands. The fate and impact of tetracycline (TC) on the nutrient degradation of wetlands and epiphytic microbes were investigated. This study showed that after TC spiking, 99.7% of TC were removed from the surface water of wetlands containing Vallisneria spiralis within 4 days post-treatment. TC spiking impaired the nutrient removal capacity and disrupted epiphytic microbial community structure while enhancing the abundance of 11 ARGs subtypes, including tetracycline resistance genes, tetX, tetM, tetO, tetQ, tetS, and tet36. TC decreased bacterial biodiversity but amplified the relative abundance of Proteobacteria and Firmicutes by 4% and 61%, respectively, and increased eukaryotic diversity. 16 metabolic pathways including Carbohydrate, Energy, Amino acid, 'cofactor and vitamins' metabolisms were significantly (p < 0.01) increased in TC treatment. Phylogenetic, functional prediction analysis indicated that Flavobacterium was positively related with xenobiotics, cell motility, 'terpenoids and polyketides' metabolism but negatively related to nucleotide metabolism, while Rhodobacter showed a reverse trend but positively related with nucleotide and 'glycan biosynthesis' and metabolism. These data highlighted that TC has negative impacts on epiphytic microbial community and nutrients removal in wetlands.


Subject(s)
Water Quality , Wetlands , Anti-Bacterial Agents , Genes, Bacterial , Phylogeny , Tetracycline
7.
Bioresour Technol ; 326: 124727, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33548819

ABSTRACT

This study explored biofloc technology for shrimp culture based on straw substrates with a size of 40 mu, 80 mu, and 120 mu. Straw substrates utilization stimulated shrimp growth compared to control. Treatment with 40 mu had the best ammonium (71.60%) and nitrite nitrogen (77.78%) removal rates generally. In all biofloc treatments, Proteobacteria (4.10-56.1%) was the most dominant phylum, followed by Bacteroidetes (2.44-38.21%), Planctomycetes (0.45-21.41%), and Verrucomicrobia (1.2-10.30%). Redundancy analysis showed that salinity was a significant factor closely related to the microbial community in biofloc. The environmental parameters (DO > pH > TN > NH4+-N > COD > Salinity > EC), nitrification, and denitrification genes (amoA > napA > nirK) were significant factors that interrelated with the bacterial genus in the network analysis. This study highlighted a novel technology of reusing agricultural waste that transformed inorganic nitrogen using nutrient recycling to control water quality in the culture system and produced microbial proteins that served as a natural nutritional supplement to enhance shrimp growth.


Subject(s)
Aquaculture , Ponds , Denitrification , Nitrification , Nitrogen , Nutrients
8.
Bioresour Technol ; 323: 124574, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33412499

ABSTRACT

This study investigated the fate of ciprofloxacin (CIP) in wetlands dominated by Vallisneria spiralis. About 99% of CIP was degraded from overlaying water within 4 days of treatment but significantly inhibited the nutrient removal capacity (TN, TP, and COD) by causing a drastic reduction in microbial aggregation in epiphytic biofilm and bacterial biodiversity. CIP triggered resistance mechanisms among dominant bacteria phyla such as Proteobacteria, Actinobacteria, and Planctomycetes causing their increased relative abundance. Additionally, the relative abundances of eukaryotic microorganisms (including; Chloroplastida, Metazoa, and Rhizaria) and 13 ARGs subtypes (including; Efflux pump, Tetracycline, Multi-drug, Rifampin, Beta-lactam, Peptide, Trimethoprim) were significantly increased. While dominant metabolic pathways such as Carbohydrate, amino acid, energy and nucleotide metabolism were inhibited. This study revealed that V. spiralis has great sorption capacity for CIP than sediment and though CIP was effectively removed from the overlying water, it caused a prolonged effect on the epiphytic biofilm microbial communities.


Subject(s)
Ciprofloxacin , Microbiota , Anti-Bacterial Agents/pharmacology , Biofilms , Ciprofloxacin/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...