Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794560

ABSTRACT

The repairing and strengthening of concrete structures using external and internal partial confinements are inevitable in the construction industry due to the new standards and rapid developments. The conventional materials and methods of confinement are unable to meet modern safety and functional standards. The fiber-reinforced polymer (FRP) enhances the strength and ductility of deteriorating and new concrete columns by reducing lateral confinement pressure and resistance against seismic shocks. The precise methods of partial confinement are inevitable for effective FRP-concrete bonding, durability, and cost-effectiveness under different loading conditions and to cope with external environmental factors. Predictive modeling and simulation techniques are pivotal for the optimization of confinement materials and methods by investigating the FRP-concrete novel confinement configurations, stress-strain responses, and failure modes. The novel materials and methods for concrete columns' partial confinement lack high compressive strength, ductility, chemical attack resistivity, and different fiber orientation impacts. This review provides an overview of recent confinement materials, novel methods, and advanced modeling and simulation techniques with a critical analysis of the research gaps for partial FRP confinement of concrete columns. The current challenges and future prospects are also presented.

2.
Chempluschem ; : e202300767, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696273

ABSTRACT

Energy storage devices play a crucial role in various applications, such as powering electronics, power backup for homes and businesses, and support for the integration of renewable energy sources into electrical grid applications. Electrode materials for energy storage devices are preferred to have a flexible nature, conductive, better capacity, and low-toxicity. Using Gallium based liquid metal alloys, such as Eutectic Gallium-Indium (EGaIn), Eutectic Gallium-Tin (EGaSn), and Eutectic Gallium-Indium-Tin (EGaInSn), as electrode materials play very important role in energy storage devices. These liquid metals have some interesting properties with a self-healing nature, high mechanical stability, compatibility with various materials, fluidity, low young's modulus, high electrical and thermal conductivity. Those properties have made it suitable to be used in various energy storage devices. In this mini review, we have concisely described the advantages and challenges of using liquid metal as electrode materials for various energy storage devices.

3.
Small ; 17(9): e1904508, 2021 03.
Article in English | MEDLINE | ID: mdl-31657135

ABSTRACT

The manipulation of progressive lithium-ion batteries (LIBs) with high energy density, low cost, and long-term cycling stability is of high priority to meet the growing demands for next-generation energy storage devices. Silicon (Si) has been receiving marvelous attention as a promising anode material for rechargeable LIBs, due to its high theoretical gravimetric capacity and low cost. Si is the second most abundant element in the earth crust in the form of silicates, so it is the most cost-effective element as an anode material in next-generation LIBs. In this review, different natural sources such as rice husk, sugar cane bagasse, bamboo, reed plant, sand, halloysite, and different waste sources such as waste of the solar power industry, fly ash, straw ash, and other industrial waste that can give rise to different nanostructured Si are systematically summarized. In addition, different synthesis methods of fabricating nanostructured Si are reviewed as well as including magnesiothermic reduction, etching methods, ball milling, and chemical vapor deposition. The advantages and disadvantages of these kind of synthesis methods are discussed as well. Furthermore, the opportunities and challenges of nano-Si are also discussed.


Subject(s)
Lithium , Nanostructures , Electric Power Supplies , Electrodes , Silicon
4.
Front Chem ; 6: 539, 2018.
Article in English | MEDLINE | ID: mdl-30467539

ABSTRACT

Silicon nanoparticles (SiNPs) are the promising materials in the various applications due to their unique properties like large surface area, biocompatibility, stability, excellent optical and electrical properties. Surface, optical and electrical properties are highly dependent on particle size, doping of different materials and so on. Porous structures in silicon nanomaterials not only improve the specific surface area, adsorption, and photoluminescence efficiency but also provide numbers of voids as well as the high surface to volume ratio and enhance the adsorption ability. In this review, we focus on the significance of porous silicon/mesoporous silicon nanoparticles (pSiNPs/mSiNPs) in the applications of energy storage, sensors and bioscience. Silicon as anode material in the lithium-ion batteries (LIBs) faces a huge change in volume during charging/discharging which leads to cracking, electrical contact loss and unstable solid electrolyte interphase. To overcome challenges of Si anode in the LIBs, mSiNPs are the promising candidates with different structures and coating of different materials to enhance electrochemical properties. On the basis of optical properties with tunable wavelength, pSiNPs are catching good results in biosensors and gas sensors. The mSiNPs with different structures and modified surfaces are playing an important role in the detection of biomarkers, drug delivery and diagnosis of cancer and tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...