Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Toxicol Lett ; 393: 84-95, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311193

ABSTRACT

Hydroxychloroquine (HCQ), a derivative of chloroquine (CQ), is an antimalarial and antirheumatic drug. Since there is limited data available on the genotoxicity of HCQ, in the current study, we used a battery of in vitro assays to systematically examine the genotoxicity of HCQ in human lymphoblastoid TK6 cells. We first showed that HCQ is not mutagenic in TK6 cells up to 80 µM with or without exogenous metabolic activation. Subsequently, we found that short-term (3-4 h) HCQ treatment did not cause DNA strand breakage as measured by the comet assay and the phosphorylation of histone H2A.X (γH2A.X), and did not induce chromosomal damage as determined by the micronucleus (MN) assay. However, after 24-h treatment, both CQ and HCQ induced comparable and weak DNA damage and MN formation in TK6 cells; upregulated p53 and p53-mediated DNA damage responsive genes; and triggered apoptosis and mitochondrial damage that may partially contribute to the observed MN formation. Using a benchmark dose (BMD) modeling analysis, the lower 95% confidence limit of BMD50 values (BMDL50) for MN induction in TK6 cells were about 19.7 µM for CQ and 16.3 µM for HCQ. These results provide additional information for quantitative genotoxic risk assessment of these drugs.


Subject(s)
Hydroxychloroquine , Tumor Suppressor Protein p53 , Humans , Hydroxychloroquine/toxicity , Hydroxychloroquine/therapeutic use , Tumor Suppressor Protein p53/genetics , DNA Damage , Chloroquine/toxicity , Comet Assay
2.
J Appl Toxicol ; 42(9): 1491-1502, 2022 09.
Article in English | MEDLINE | ID: mdl-35261072

ABSTRACT

Black cohosh extract (BCE) is one of the most popular botanical products for relieving menopausal symptoms. However, recent studies indicate that BCE is not only ineffective for menopausal therapy but also induces genotoxicity through an aneugenic mode of action (MoA). In this study, the cytotoxicity of five constituents of BCE was evaluated in human lymphoblastoid TK6 cells. Among the five constituents, actein (up to 50 µM) showed the highest cytotoxicity and was thus selected for further genotoxicity evaluations. Actein caused DNA damage proportionally to concentration as evidenced by the phosphorylation of the histone protein H2A.X (γH2A.X) and resulted in chromosomal damage as measured by the increased percentage of micronuclei (%MN) in cells. In addition, actein activated DNA damage response (DDR) pathway through induction of p-ATM, p-Chk1, and p-Chk2, which subsequently induced cell cycle changes and apoptosis. Moreover, both BCE and actein increased intracellular reactive oxygen species (ROS) production, decreased glutathione levels, and activated the mitogen-activated protein kinases (MAPK) signaling pathway. N-acetylcysteine, a ROS scavenger, attenuated BCE- and actein-induced ROS production, apoptosis, and DNA damage. These findings indicate that BCE- and actein-induced genotoxicity is mediated, at least partially, through oxidative stress. Taken together, our data show that actein is likely one of the major contributors to BCE-induced genotoxicity.


Subject(s)
Cimicifuga , Cimicifuga/metabolism , Cimicifuga/toxicity , DNA Damage , Humans , Plant Extracts , Reactive Oxygen Species/metabolism , Saponins , Triterpenes
3.
Article in English | MEDLINE | ID: mdl-34454692

ABSTRACT

Kirkland et al. [Mutation Research/Genetic Toxicology and Environmental Mutagenesis 847 (2019) 403035, https://doi.org/10.1016/j.mrgentox.2019.03.008; Mutation Research/Genetic Toxicology and Environmental Mutagenesis 839 (2019): 21-35, https://doi.org/10.1016/j.mrgentox.2019.01.007] made recommendations on the use of the in vivo comet and transgenic rodent (TGR) gene mutation assays to screen for in vivo mutagenicity. Although it is not directly stated in either of these publications, we are concerned that the reports could potentially be used to support assertions that it is equally acceptable to follow up a positive bacterial reverse mutation (Ames) finding for an investigational drug with either the in vivo TGR mutation assay or an in vivo comet assay. For regulatory genotoxicity assessment, the in vivo follow-up for an in vitro bacterial mutation-positive drug, drug-related metabolite, or impurity should be based upon evaluating a similar endpoint (i.e., mutagenicity) as the intent is to determine if the findings of in vitro gene mutation correlate with findings of in vivo gene mutation (i.e., biologically relevant to the in vitro results). Thus, the most scientifically appropriate in vivo assays would be the TGR mutation assay or, in some circumstances, the in vivo Pig-a assay. An in vivo rodent comet assay or combination of the in vivo micronucleus and in vivo rodent comet assays would generally not be an appropriate follow-up test.


Subject(s)
Biological Assay/methods , Drugs, Investigational/chemistry , Drugs, Investigational/metabolism , Mutation/drug effects , Animals , Animals, Genetically Modified/genetics , Carcinogens/toxicity , Comet Assay/methods , Follow-Up Studies , Micronucleus Tests/methods , Mutagenicity Tests/methods , Mutagens/toxicity , Rodentia
4.
Toxicol Sci ; 182(1): 96-106, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33856461

ABSTRACT

Black cohosh extract (BCE) is marketed to women as an alternative to hormone replacement therapy for alleviating menopausal symptoms. Previous studies by the National Toxicology Program revealed that BCE induced micronuclei (MN) and a nonregenerative macrocytic anemia in rats and mice, likely caused by disruption of the folate metabolism pathway. Additional work using TK6 cells showed that BCE induced aneugenicity by destabilizing microtubules. In the present study, BCE-induced MN were confirmed in TK6 and HepG2 cells. We then evaluated BCE-induced DNA damage using the comet assay at multiple time points (0.5-24 h). Following a 0.5-h exposure, BCE induced significant, concentration-dependent increases in %tail DNA in TK6 cells only. Although DNA damage decreased in TK6 cells over time, likely due to repair, small but statistically significant levels of DNA damage were observed after 2 and 4 h exposures to 250 µg/ml BCE. A G1/S arrest in TK6 cells exposed to 125 µg/ml BCE (24 h) was accompanied by apoptosis and increased expression of γH2A.X, p-Chk1, p-Chk2, p53, and p21. Conditioning TK6 cells to physiological levels of folic acid (120 nM) did not increase the sensitivity of cells to BCE-induced DNA damage. BCE did not alter global DNA methylation in TK6 and HepG2 cells cultured in standard medium. Our results suggest that BCE induces acute DNA strand breaks which are quickly repaired in TK6 cells, whereas DNA damage seen at 4 and 24 h may reflect apoptosis. The present study supports that BCE is genotoxic mainly by inducing MN with an aneugenic mode of action.


Subject(s)
Cimicifuga , Animals , Cell Line , Comet Assay , DNA Damage , Humans , Mice , Mutagens , Plant Extracts , Rats
5.
J Pineal Res ; 70(3): e12726, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33638890

ABSTRACT

Circadian disruption has been identified as a risk factor for health disorders such as obesity, cardiovascular disease, and cancer. Although epidemiological studies suggest an increased risk of various cancers associated with circadian misalignment due to night shift work, the underlying mechanisms have yet to be elucidated. We sought to investigate the potential mechanistic role that circadian disruption of cancer hallmark pathway genes may play in the increased cancer risk in shift workers. In a controlled laboratory study, we investigated the circadian transcriptome of cancer hallmark pathway genes and associated biological pathways in circulating leukocytes obtained from healthy young adults during a 24-hour constant routine protocol following 3 days of simulated day shift or night shift. The simulated night shift schedule significantly altered the normal circadian rhythmicity of genes involved in cancer hallmark pathways. A DNA repair pathway showed significant enrichment of rhythmic genes following the simulated day shift schedule, but not following the simulated night shift schedule. In functional assessments, we demonstrated that there was an increased sensitivity to both endogenous and exogenous sources of DNA damage after exposure to simulated night shift. Our results suggest that circadian dysregulation of DNA repair may increase DNA damage and potentiate elevated cancer risk in night shift workers.


Subject(s)
Biomarkers, Tumor/genetics , Chronobiology Disorders/etiology , Circadian Rhythm , DNA Damage , DNA Repair , Neoplasms/etiology , Shift Work Schedule/adverse effects , Transcriptome , Activity Cycles , Adult , Chronobiology Disorders/genetics , Chronobiology Disorders/physiopathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasms/genetics , Neoplasms/pathology , Risk Assessment , Risk Factors , Sleep , Time Factors , Young Adult
6.
Food Chem Toxicol ; 145: 111662, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32798647

ABSTRACT

Pyrrolizidine alkaloid (PA)-containing plants are among the most common poisonous plants affecting humans, livestock, and wildlife worldwide. A large number of PAs are known to induce genetic damage after metabolic activation. In the present study, using a battery of fourteen newly developed TK6 cell lines, each expressing a single human cytochrome P450 (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C18, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7), we identified specific CYPs responsible for bioactivating three PAs - lasiocarpine, riddelliine, and senkirkine. Among the fourteen cell lines, cells expressing CYP3A4 showed significant increases in PA-induced cytotoxicity, evidenced by decreased ATP production and cell viability, and increased caspase 3/7 activities. LC-MS/MS analysis revealed the formation of 1-hydroxymethyl-7-hydroxy-6,7-dihydropyrrolizine (DHP), the main reactive metabolite of PAs, in CYP3A4-expressing TK6 cells. DHP was also detected in CYP3A5- and 3A7-expressing cells after PA exposure, but to a much lesser extent. Subsequently, using a high-throughput micronucleus assay, we demonstrated that PAs induced concentration-dependent increases in micronuclei and G2/M phase cell cycle arrest in three CYP3A variant-expressing TK6 cell lines. Using Western blotting, we observed that PA-induced apoptosis, cell cycle changes, and DNA damage were primarily mediated by CYP3A4. Benchmark dose (BMD) modeling demonstrated that lasiocarpine, of the three PAs, was the most potent inducer of micronuclei, with a BMD100 of 0.036 µM. These results indicate that our TK6 cell system holds promise for genotoxicity screening of compounds requiring metabolic activation, identifying specific CYPs involved in bioactivation, and discriminating the genotoxic compounds that have different chemical structures.


Subject(s)
Mutagens/toxicity , Pyrrolizidine Alkaloids/toxicity , Apoptosis/drug effects , Cell Line , Cytochrome P-450 Enzyme System/metabolism , DNA Damage/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Mutagenicity Tests
8.
Arch Toxicol ; 94(6): 2207-2224, 2020 06.
Article in English | MEDLINE | ID: mdl-32318794

ABSTRACT

Primary human hepatocytes (PHHs) are considered the "gold standard" for evaluating hepatic metabolism and toxicity of xenobiotics. In the present study, we evaluated the genotoxic potential of four indirect-acting (requiring metabolic activation) and six direct-acting genotoxic carcinogens, one aneugen, and five non-carcinogens that are negative or equivocal for genotoxicity in vivo in cryopreserved PHHs derived from three individual donors. DNA damage was determined over a wide range of concentrations using the CometChip technology and the resulting dose-responses were quantified using benchmark dose (BMD) modeling. Following a 24-h treatment, nine out of ten genotoxic carcinogens produced positive responses in PHHs, while negative responses were found for hydroquinone, aneugen colchicine and five non-carcinogens. Overall, PHHs demonstrated a higher sensitivity (90%) for detecting DNA damage from genotoxic carcinogens than the sensitivities previously reported for HepG2 (60%) and HepaRG (70%) cells. Quantitative analysis revealed that most of the compounds produced comparable BMD10 values among the three types of hepatocytes, while PHHs and HepaRG cells produced similar BMD1SD values. Evidence of sex- and ethnicity-related interindividual variation in DNA damage responses was also observed in the PHHs. A literature search for in vivo Comet assay data conducted in rodent liver tissues demonstrated consistent positive/negative calls for the compounds tested between in vitro PHHs and in vivo animal models. These results demonstrate that CometChip technology can be applied using PHHs for human risk assessment and that PHHs had higher sensitivity than HepaRG cells for detecting genotoxic carcinogens in the CometChip assay.


Subject(s)
Comet Assay , DNA Damage , Hepatocytes/drug effects , High-Throughput Screening Assays , Mutagens/toxicity , Activation, Metabolic , Dose-Response Relationship, Drug , Female , Hep G2 Cells , Hepatocytes/pathology , Humans , Male , Mutagens/metabolism , Race Factors , Reproducibility of Results , Risk Assessment , Sex Factors
9.
Toxicol Sci ; 175(2): 251-265, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32159784

ABSTRACT

Metabolism plays a key role in chemical genotoxicity; however, most mammalian cells used for in vitro genotoxicity testing lack effective metabolizing enzymes. We recently developed a battery of TK6-derived cell lines that individually overexpress 1 of 8 cytochrome P450s (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, and 3A4) using a lentiviral expression system. The increased expression and metabolic function of each individual CYP in each established cell line were confirmed using real-time PCR, Western blotting, and mass spectrometry analysis; the parental TK6 cells and empty vector (EV) transduced cells had negligible CYP levels. Subsequently, we evaluated these cell lines using 2 prototypical polyaromatic hydrocarbon mutagens, 7,12-dimethylbenz[a]anthracene (DMBA) and benzo[a]pyrene (B[a]P), that require metabolic activation to exert their genotoxicity. DMBA-induced cytotoxicity, phosphorylation of histone H2A.X, and micronucleus formation were significantly increased in TK6 cells with CYP1A1, 1B1, 2B6, and 2C19 expression as compared with EV controls. B[a]P significantly increased cytotoxicity, DNA damage, and chromosomal damage in TK6 cells overexpressing CYP1A1 and 1B1 when compared with EV controls. B[a]P also induced micronucleus formation in TK6 cells expressing CYP1A2. These results suggest that our CYP-expressing TK6 cell system can be used to detect the genotoxicity of compounds requiring metabolic transformation.


Subject(s)
Cells, Cultured/drug effects , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , DNA Damage/drug effects , Mutagenicity Tests/methods , Mutagens/toxicity , Humans
10.
Environ Mol Mutagen ; 58(7): 508-521, 2017 08.
Article in English | MEDLINE | ID: mdl-28755435

ABSTRACT

DNA damage and alterations in global DNA methylation status are associated with multiple human diseases and are frequently correlated with clinically relevant information. Therefore, assessing DNA damage and epigenetic modifications, including DNA methylation, is critical for predicting human exposure risk of pharmacological and biological agents. We previously developed a higher-throughput platform for the single cell gel electrophoresis (comet) assay, CometChip, to assess DNA damage and genotoxic potential. Here, we utilized the methylation-dependent endonuclease, McrBC, to develop a modified alkaline comet assay, "EpiComet," which allows single platform evaluation of genotoxicity and global DNA methylation [5-methylcytosine (5-mC)] status of single-cell populations under user-defined conditions. Further, we leveraged the CometChip platform to create an EpiComet-Chip system capable of performing quantification across simultaneous exposure protocols to enable unprecedented speed and simplicity. This system detected global methylation alterations in response to exposures which included chemotherapeutic and environmental agents. Using EpiComet-Chip on 63 matched samples, we correctly identified single-sample hypermethylation (≥1.5-fold) at 87% (20/23), hypomethylation (≥1.25-fold) at 100% (9/9), with a 4% (2/54) false-negative rate (FNR), and 10% (4/40) false-positive rate (FPR). Using a more stringent threshold to define hypermethylation (≥1.75-fold) allowed us to correctly identify 94% of hypermethylation (17/18), but increased our FPR to 16% (7/45). The successful application of this novel technology will aid hazard identification and risk characterization of FDA-regulated products, while providing utility for investigating epigenetic modes of action of agents in target organs, as the assay is amenable to cultured cells or nucleated cells from any tissue. Environ. Mol. Mutagen. 58:508-521, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Comet Assay/methods , DNA Damage , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , High-Throughput Screening Assays/methods , Cell Culture Techniques , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Methyl Methanesulfonate/toxicity , Mutagens/toxicity , Reproducibility of Results , Sensitivity and Specificity
11.
Environ Mol Mutagen ; 58(3): 122-134, 2017 04.
Article in English | MEDLINE | ID: mdl-28326610

ABSTRACT

Ethylene oxide (EO) is a direct acting alkylating agent; in vitro and in vivo studies indicate that it is both a mutagen and a carcinogen. However, it remains unclear whether the mode of action (MOA) for cancer for EO is a mutagenic MOA, specifically via point mutation. To investigate the MOA for EO-induced mouse lung tumors, male Big Blue (BB) B6C3F1 mice (10/group) were exposed to EO by inhalation, 6 hr/day, 5 days/week for 4 (0, 10, 50, 100, or 200 ppm EO), 8, or 12 weeks (0, 100, or 200 ppm EO). Lung DNA samples were analyzed for cII mutant frequency (MF) at 4, 8 and 12 weeks of exposure; the mutation spectrum was analyzed for mutants from control and 200 ppm EO treatments. Although EO-induced cII MFs were 1.5- to 2.7-fold higher than the concurrent controls at 4 weeks, statistically significant increases in the cII MF were found only after 8 and 12 weeks of exposure and only at 200 ppm EO (P ≤ 0.05), which is twice the highest concentration used in the cancer bioassay. Consistent with the positive response, DNA sequencing of cII mutants showed a significant shift in the mutational spectra between control and 200 ppm EO following 8 and 12 week exposures (P ≤ 0.035), but not at 4 weeks. Thus, EO mutagenic activity in vivo was relatively weak and required higher than tumorigenic concentrations and longer than 4 weeks exposure durations. These data do not follow the classical patterns for a MOA mediated by point mutations. Environ. Mol. Mutagen. 58:122-134, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Carcinogens/toxicity , Ethylene Oxide/toxicity , Inhalation Exposure/adverse effects , Lung/drug effects , Mutagens/toxicity , Point Mutation , Animals , Dose-Response Relationship, Drug , Lung/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Male , Mice, Inbred Strains , Time Factors
12.
J Toxicol Sci ; 41(6): 719-730, 2016.
Article in English | MEDLINE | ID: mdl-27853100

ABSTRACT

Potential health risks for humans from dietary exposure to acrylamide (AA) and its reactive epoxide metabolite, glycidamide (GA), exist because substantial amounts of AA are found in a variety of fried and baked starchy foods. AA is tumorigenic in rodents, and a large number of studies indicate that AA is genotoxic in multiple organs of mice and rats. Although AA is neurotoxic, there are no reports on AA-induced gene mutations in the mouse brain. Therefore, to investigate if gene mutation can be induced by AA or its metabolite GA, we screened brains for cII mutant frequency (MF) and scored for mutation types in previously treated male and female Big Blue mice with 0, 1.4 mM, and 7.0 mM AA or GA in drinking water for up to 4 weeks. High doses of AA and GA induced similar cII MFs in males and females but only the induced cII MF in males was significantly higher than the corresponding male control MF (p < 0.05). Molecular analysis of the cII mutants from males showed that AA and GA each induced at least a 2.5-fold increase in the incidence of G:C → T:A, A:T → T:A, and A:T → C:G transversions compared to the vehicle controls, with similar mutational spectra observed when comparing AA with GA treatment. These results suggest that the MFs and types of mutations induced by AA and GA in the brain are consistent with AA exerting its genotoxicity via metabolism to GA.


Subject(s)
Acrylamide/toxicity , Brain/drug effects , Drinking Water , Epoxy Compounds/toxicity , Mutagenesis , Mutation , Transcription Factors/genetics , Viral Proteins/genetics , Water Pollutants, Chemical/toxicity , Acrylamide/administration & dosage , Administration, Oral , Animals , Brain/metabolism , DNA Mutational Analysis , Dose-Response Relationship, Drug , Epoxy Compounds/administration & dosage , Female , Male , Mice, Transgenic , Mutagenicity Tests , Sex Factors
13.
J Nanosci Nanotechnol ; 16(7): 7720-7730, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27547159

ABSTRACT

Noroviruses (NoV) are the leading cause of nonbacterial gastroenteritis in humans, and replicate extensively in the human gastrointestinal (GI) tract. Silica (also known as silicon dioxide, SiO2) nanoparticles (NPs) used in processed foods, dairy products, and beverages also accumulate in the GI tract. We investigated the effect of silica NPs on NoV replication and host cell response during virus infection, using murine norovirus (MNV-1) infection of RAW 264.7 murine macrophages. Pretreatment with 10 µg/ml silica significantly reduced the viability of macrophages, but no cumulative effects on viability of macrophages were observed with MNV-1 infection. No difference was observed between exposure to control or silica NPs on either the quantity of viral genome copies or the production of infectious virus in macrophages infected with MNV-1. Silica NPs reduced the ability of macrophages to upregulate genes encoding bone morphogenic proteins (BMPs), chemokine ligands and cytokines for which expression levels were otherwise found to be upregulated in response to MNV-1 infection. Furthermore, silica NPs reduced the levels of proinflammatory cytokines secreted by macrophages in response to MNV infection. Finally, silica NPs with MNV-1 infection produced a genotoxic insult to macrophages. Strikingly, this genotoxic insult was also found to occur as a synergistic effect of silica NPs and feline calicivirus infection in feline kidney epithelial cells. Taken together, our study suggests important safety considerations related to reducing exposure to silica NPs affecting the GI tract in individuals infected with NoVs and possibly other foodborne viruses.

14.
J Vis Exp ; (111)2016 05 04.
Article in English | MEDLINE | ID: mdl-27166647

ABSTRACT

Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.


Subject(s)
Comet Assay , DNA Damage , Animals , DNA , DNA Repair , Humans , Liver , Rats
15.
Int J Nanotechnol Eng Med ; 1(3): 63-73, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29930994

ABSTRACT

Noroviruses (NoV) have enhanced tropism for the gastrointestinal (GI) tract and are the major cause of nonbacterial gastroenteritis in humans. Titanium dioxide (TiO2) nanoparticles (NPs) used as food additives, dietary supplements, and cosmetics accumulate in the GI tract. We investigated the effect anatase TiO2 NPs on NoV replication and host response during virus infection, using murine norovirus (MNV-1) infection of RAW 264.7 macrophages. Pretreatment with 20 µg/ml anatase NPs significantly reduced the viability of macrophages alone or during virus infection, but did not alter virus replication. In contrast, pre-incubation with 2 µg/ml anatase NPs reduced virus replication fivefold at 48 h. The presence of anatase NPs during MNV-1 infection evoked a pro-inflammatory response, as measured by a significant increase in expression of cytokines, including IL-6, IFN-γ, TNFα and the TGFß1. No genotoxic insults due to anatase TiO2 NPs alone or to their presence during MNV-1 infection were detected. This study highlights important safety considerations related to NP exposure of the GI tract in individuals infected with noroviruses or other foodborne viruses.

16.
Article in English | MEDLINE | ID: mdl-26338542

ABSTRACT

Short-term phototoxicity testing is useful in selecting test agents for the longer and more expensive photocarcinogenesis safety tests; however, no validated short-term tests have been proven reliable in predicting the outcome of a photocarcinogenesis safety test. A transgenic, hairless, albino (THA) mouse model was developed that carries the gpt and red/gam [Spi(-)] genes from the gpt delta mouse background and the phenotypes from the SKH-1 mouse background to use as a short-term test in lieu of photocarcinogenesis safety tests. Validation of the THA mouse model was confirmed by exposing groups of male mice to sub-erythemal doses of ultraviolet B (UVB) irradiation for three consecutive days emitted from calibrated overhead, Kodacel-filtered fluorescent lamps and measuring the mutant frequencies (MFs) in the gpt and red/gam (Spi(-)) genes and types of mutations in the gpt gene. The doses or irradiation were monitored with broad-spectrum dosimeters that were calibrated to a NIST-traceable standard and cumulative CIE-weighted doses were 20.55 and 41.0mJ/cm(2) (effective). Mice were sacrificed 14 days after the final UVB exposure and MFs in both the gpt and red/gam genes were evaluated in the epidermis. The exposure of mice to UVB induced significant ten- to twelve-fold increases in the gpt MF and three- to five-fold increases in the Spi(-) MF over their respective background MF, 26±3×10(-6) and 9±1×10(-6). The gpt mutation spectra were significantly different between that of the UVB-irradiated and that of non-irradiated mice although the mutation spectra of both groups were dominated by C→T transitions (84% and 66%). In mice exposed to UVB, the C→T transitions occurred almost exclusively at dipyrimidine sites (92%), whereas in non-irradiated control mice, the C→T transitions occurred at CpG sites (86%). These results suggest that the newly developed THA mice are a useful and reliable model for testing UVB-induced mutagenicity in skin tissue. The application of this model for short-term prediction of solar-induced skin carcinogenicity is presently under investigation.


Subject(s)
Epidermis/radiation effects , Escherichia coli Proteins/genetics , Mice, Hairless , Mice, Transgenic/genetics , Models, Animal , Mutation Rate , Pentosyltransferases/genetics , Animals , Dose-Response Relationship, Radiation , Epidermis/metabolism , Escherichia coli Proteins/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mutagenicity Tests , Pentosyltransferases/metabolism , Ultraviolet Rays
17.
Mutat Res Genet Toxicol Environ Mutagen ; 789-790: 46-52, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26232257

ABSTRACT

Chronic inhalation of vanadium pentoxide (V2O5) increases the incidence of alveolar/bronchiolar tumors in male and female B6C3F1 mice at 1, 2, or 4 mg/m(3). The genotoxicity of V2O5 has been extensively investigated in the literature with mixed results. In general, tests for gene mutations have been negative. Both positive and negative results were reported for clastogenicity in vitro with some reports suggesting aneugenic potential. In vivo, V2O5 was negative in the mouse micronucleus test (erythrocyte) and comet assay (lung). Previously, K-ras mutations have been detected in the lung tumors in mice exposed to V2O5. Recently, a short-term inhalation study in B6C3F1 mice reported slight induction of 8-oxodGuo DNA lesions in lungs. Because 8-oxodGuo DNA lesions can lead to gene mutations if not repaired or if misrepaired, we have used groups of transgenic Big Blue (BB) mice (B6C3F1) to test whether V2O5 has mutagenic potential in vivo in the tumor target tissue under the conditions of the bioassay. Groups of six male BB mice were exposed to particulate aerosols containing 0, 0.1, or 1 mg/m(3) (tumorigenic concentration) V2O5 for 4 or 8 weeks (6h/day, 5 days/week) and cII mutant frequencies (MFs) were evaluated in the right lungs. A significant increase in lung weight was noted in mice exposed to 1 mg/m(3) V2O5 (P ≤ 0.05) compared to sham control, confirming exposure to an inflammatory level of the test material. The mean MFs (× 10(-6)) of mice in the 4-week exposure groups were 30 (sham control), 39 (0.1 mg/m(3)), and 24 (1 mg/m(3)) while the corresponding values in the 8-week exposure groups were 29, 48, and 17, respectively. None of these cII MFs measured at any time point was significantly higher than the corresponding control MFs (P ≥ 0.1). Overall, these results suggest that mutagenicity is not likely to be an initial key event in the lung tumorigenicity of V2O5.


Subject(s)
Lung/drug effects , Mutation/drug effects , Transcription Factors/genetics , Vanadium Compounds/toxicity , Viral Proteins/genetics , Administration, Inhalation , Animals , DNA Mutational Analysis , Dose-Response Relationship, Drug , Lung/metabolism , Lung/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Male , Mice, Transgenic , Mutagenicity Tests , Organ Size/drug effects , Time Factors , Vanadium Compounds/administration & dosage
18.
Environ Mol Mutagen ; 56(5): 446-56, 2015 06.
Article in English | MEDLINE | ID: mdl-25639614

ABSTRACT

Potential health risks for humans from exposure to acrylamide (AA) and its epoxide metabolite glycidamide (GA) have garnered much attention lately because substantial amounts of AA are present in a variety of fried and baked starchy foods. AA is tumorigenic in rodents, and a large number of in vitro and in vivo studies indicate that AA is genotoxic. A recent cancer bioassay on AA demonstrated that the lung was one of the target organs for tumor induction in mice; however, the mutagenicity of AA in this tissue is unclear. Therefore, to investigate whether or not gene mutation is involved in the etiology of AA- or GA-induced mouse lung carcinogenicity, we screened for cII mutant frequency (MF) in lungs from male and female Big Blue (BB) mice administered 0, 1.4, and 7.0 mM AA or GA in drinking water for up to 4 weeks (19-111 mg/kg bw/days). Both doses of AA and GA produced significant increases in cII MFs, with the high doses producing responses 2.7-5.6-fold higher than the corresponding controls (P ≤ 0.05; control MFs = 17.2 ± 2.2 and 15.8 ± 3.5 × 10(-6) in males and females, respectively). Molecular analysis of the mutants from high doses indicated that AA and GA produced similar mutation spectra and that these spectra were significantly different from the spectra in control mice (P ≤ 0.01). The predominant types of mutations in the lung cII gene from AA- and GA-treated mice were A:T → T:A, and G:C → C:G transversions, and -1/+1 frameshifts at a homopolymeric run of Gs. The MFs and types of mutations induced by AA and GA in the lung are consistent with AA exerting its genotoxicity via metabolism to GA. These results suggest that AA is a mutagenic carcinogen in mouse lungs and therefore further studies on its potential health risk to humans are warranted. Environ. Mol. Mutagen. 56:446-456, 2015. © 2015 Wiley Periodicals, Inc.


Subject(s)
Acrylamide/toxicity , Epoxy Compounds/toxicity , Lung Neoplasms/genetics , Mutagens/toxicity , Mutation , Transcription Factors/genetics , Viral Proteins/genetics , Acrylamide/metabolism , Administration, Oral , Animals , DNA/genetics , Dose-Response Relationship, Drug , Epoxy Compounds/metabolism , Female , Lung Neoplasms/chemically induced , Male , Mice, Inbred Strains , Mutagens/metabolism , Sequence Analysis, DNA , Sex Characteristics
19.
Genes Environ ; 37: 16, 2015.
Article in English | MEDLINE | ID: mdl-27350812

ABSTRACT

INTRODUCTION: Biological studies in animals and epidemiological findings in humans clearly demonstrate that estrogens including 17ß-estradiol (E2) are weak carcinogens via both genetic and epigenetic mechanisms. Carcinogenesis analyses have indicated that female mice exposed to E2 as neonates develop more mammary and ovarian tumors when compared to adult exposures. In the present study, Big Blue transgenic mice were used to investigate the effects of E2 on mutagenicity of 7,12-dimethylbenz [a] anthracene (DMBA), a genotoxic carcinogen, in mammary gland and ovary following neonatal exposure. RESULTS: DMBA treatment resulted in significant increases in cII mutant frequencies (MFs) in both mammary glands and ovaries, with A:T → T:A transversion as the predominant type of mutation. However, co-exposure to E2 daily for the first 5 days after birth and to DMBA at 6 months of age did not significantly increase cII MFs compared to DMBA treatment alone. Further, there were also no significant differences in mutational spectra between DMBA exposure alone and E2 + DMBA treatment. CONCLUSION: These results suggest that early life exposures of mice to estrogens like E2 do not enhance mutagenicity by subsequent exposure to a chemical like DMBA in later life.

20.
Environ Mol Mutagen ; 56(4): 356-65, 2015 May.
Article in English | MEDLINE | ID: mdl-25361439

ABSTRACT

Estragole, a naturally occurring constituent of various herbs and spices, is a rodent liver carcinogen which requires bio-activation. To further understand the mechanisms underlying its carcinogenicity, genotoxicity was assessed in F344 rats using the comet, micronucleus (MN), and DNA adduct assays together with histopathological analysis. Oxidative damage was measured using human 8-oxoguanine-DNA-N-glycosylase (hOGG1) and EndonucleaseIII (EndoIII)-modified comet assays. Results with estragole were compared with the structurally related genotoxic carcinogen, safrole. Groups of seven-week-old male F344 rats received corn oil or corn oil containing 300, 600, or 1,000 mg/kg bw estragole and 125, 250, or 450 mg/kg bw safrole by gavage at 0, 24, and 45 hr and terminated at 48 hr. Estragole-induced dose-dependent increases in DNA damage following EndoIII or hOGG1 digestion and without enzyme treatment in liver, the cancer target organ. No DNA damage was detected in stomach, the non-target tissue for cancer. No elevation of MN was observed in reticulocytes sampled from peripheral blood. Comet assays, both without digestion or with either EndoIII or hOGG1 digestion, also detected DNA damage in the liver of safrole-dosed rats. No DNA damage was detected in stomach, nor was MN elevated in peripheral blood following dosing with safrole suggesting that, as far both safrole and estragole, oxidative damage may contribute to genotoxicity. Taken together, these results implicate multiple mechanisms of estragole genotoxicity. DNA damage arises from chemical-specific interaction and is also mediated by oxidative species.


Subject(s)
Anisoles/toxicity , Mutagenicity Tests/methods , Allylbenzene Derivatives , Animals , Comet Assay/methods , DNA Adducts , DNA Damage/drug effects , DNA Glycosylases/metabolism , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Male , Micronucleus Tests , Rats, Inbred F344 , Safrole/toxicity , Stomach/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...