Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Family Med Prim Care ; 11(11): 6759-6764, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36993009

ABSTRACT

Background: Dietary habits and physical inactivity are related to the risks of non-communicable diseases (NCDs), such as cardiovascular diseases, Diabetes and Hypertension, of which burdens are increasing all over the world. . It is essential that lifestyle modification and nondrug treatment measures such as health education, reduction in weight through regular exercise, changing in eating patterns is essential to control of Diabetes and Hypertension. Hence the present study is taken up with objectives. Objectives: 1. to assess and compare the impact of health education on life style modification (diet modification) on control of hypertension and diabetes of intervention group. 2. To assess and compare the practice of changed pattern of life style modification (diet modification) of known hypertensives and diabetics with continuous health education module and follow up. Methodology: This community-level education intervention trial to reduce the burden of Non communicable diseases (hypertension and diabetes) was conducted in coastal Karnataka. The study was taken up in a rural area of coastal Karnataka . A specific module for physical activity, diet modification separately for hypertension and diabetics was prepared by experts and this specific module trained social worker introduced diet modification, exercise pattern and habits to the village enrolled participants with involvement of family member who actually cooks at home for 2 months. Results: In the study subjects, it was observed that, the subjects who had higher systolic and diastolic pressure before intervention, changed to the lower levels after intervention. Though the change in blood pressure is not statistically significant. The intervention of overall lifestyle intervention, there was increased subjects with Hb1Ac in the range of 7-9% and reduced subjects with Hb1Ac of >9.1%. Though it was not statistically significant. There was significant improvement in the mean duration of physical activity in order to control the hypertension and Diabetes mellitus. We also noticed that there was reduction in the sedentary hours, though the difference was not statistically significant. Conclusion: Life style intervention with continuous monitoring is essential to bring down the blood pressure and diabetic sugars. We donot need doctors alone to bring the life style modifications and the health workers can initiate it in the villages. The intervention of life style modifications have brought in better care and quality of life in the villages compared to control village.

2.
ACS Omega ; 6(45): 30726-30733, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34805700

ABSTRACT

Medical shortages during the COVID-19 pandemic saw numerous efforts to 3D print personal protective equipment and treatment supplies. There is, however, little research on the potential biocompatibility of 3D-printed parts using typical polymeric resins as pertaining to volatile organic compounds (VOCs), which have specific relevance for respiratory circuit equipment. Here, we measured VOCs emitted from freshly printed stereolithography (SLA) replacement medical parts using proton transfer reaction mass spectrometry and infrared differential absorption spectroscopy, and particulates using a scanning mobility particle sizer. We observed emission factors for individual VOCs ranging from ∼0.001 to ∼10 ng cm-3 min-1. Emissions were heavily dependent on postprint curing and mildly dependent on the type of SLA resin. Curing reduced the emission of all observed chemicals, and no compounds exceeded the recommended dose of 360 µg/d. VOC emissions steadily decreased for all parts over time, with an average e-folding time scale (time to decrease to 1/e of the starting value) of 2.6 ± 0.9 h.

3.
Environ Sci Technol ; 55(8): 4410-4419, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33793220

ABSTRACT

Nitrated phenols (NPs) are important atmospheric pollutants that affect air quality, radiation, and health. The recent development of the time-of-flight chemical ionization mass spectrometer (ToF-CIMS) allows quantitative online measurements of NPs for a better understanding of their sources and environmental impacts. Herein, we deployed nitrate ions as reagent ions in the ToF-CIMS and quantified six classes of gaseous NPs in Beijing. The concentrations of NPs are in the range of 1 to 520 ng m-3. Nitrophenol (NPh) has the greatest mean concentration. Dinitrophenol (DNP) shows the greatest haze-to-clean concentration ratio, which may be associated with aqueous production. The high concentrations and distinct diurnal profiles of NPs indicate a strong secondary formation to overweigh losses, driven by high emissions of precursors, strong oxidative capacity, and high NOx levels. The budget analysis on the basis of our measurements and box-model calculations suggest a minor role of the photolysis of NPs (<1 ppb h-1) in producing OH radicals. NPs therefore cannot explain the underestimated OH production in urban environments. Discrepancies between these results and the laboratory measurements of the NP photolysis rates indicate the need for further studies aimed at understanding the production and losses of NPs in polluted urban environments.


Subject(s)
Air Pollutants , Nitrates , Air Pollutants/analysis , Beijing , Environmental Monitoring , Gases/analysis , Phenols/analysis
4.
Environ Sci Technol ; 55(10): 6594-6601, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33900726

ABSTRACT

Organic oxidation reactions in the atmosphere can be challenging to parse due to the large number of branching points within each molecule's reaction mechanism. This complexity can complicate the attribution of observed effects to a particular chemical pathway. In this study, we simplify the chemistry of atmospherically relevant systems, and particularly the role of NOx, by generating individual alkoxy radicals via alkyl nitrite photolysis (to limit the number of accessible reaction pathways) and measuring their product distributions under different NO/NO2 ratios. Known concentrations of NO in the classically "high-NO" range are maintained in the chamber, thereby constraining first-generation RO2 (peroxy radicals) to react nearly exclusively with NO. Products are measured in both the gas phase (with a proton-transfer reaction mass spectrometer) and the particle phase (with an aerosol mass spectrometer). We observe substantial differences in measured products under varying NO/NO2 ratios (from ∼0.1 to >1); along with modeling simulations using the Master Chemical Mechanism (MCM), these results suggest indirect effects of NOx chemistry beyond the commonly cited RO2 + NO reaction. Specifically, lower-NO/NO2 ratios foster higher concentrations of secondary OH, higher concentrations of peroxyacyl nitrates (PAN, an atmospheric reservoir species), and a more highly oxidized product distribution that results in more secondary organic aerosol (SOA). The impact of NOx concentration beyond simple RO2 branching must be considered when planning laboratory oxidation experiments and applying their results to atmospheric conditions.


Subject(s)
Atmosphere , Nitrogen Dioxide , Aerosols , Nitrites , Oxidation-Reduction
5.
Indian Dermatol Online J ; 11(6): 948-952, 2020.
Article in English | MEDLINE | ID: mdl-33344345

ABSTRACT

INTRODUCTION: Lupus Vulgaris (LV) is the chronic, progressive, tissue destructive form of cutaneous tuberculosis. LV should be diagnosed and treated to prevent scaring and deformities. Histopathology is the gold standard for the diagnosis. Dermoscopy is helpful tool in diagnosing different dermatological condition. Here, dermoscopic and histopathogical correlation in LV was attempted. MATERIALS AND METHODS: It was a cross sectional, observational study done from February 2019 to October 2019. Nineteen patients of LV were included. Dermlite 4 with attached smart phone (iphone) was employed. LV lesions were subjected to skin biopsy to confirm the diagnosis. RESULTS: Study enrolled 19 patients, with 8males, 5 female and 6 children. Dermoscopy showed yellowish-white globules, white structureless areas and white scales were noted in 19 (100%) patients. Telangiectasias were seen in 16 (84.21%) patients as long linear, branching and short linear vessels. Pinkish-red background was noted in all patients (100% n=19). Newer observations included white shiny streaks, white rosettes and bluish hue. Age, sex, duration of lesions had no influence in the dermoscopic patterns. Discrepancy in dermoscopic-histopathologic correlation was noted. Facial lesions showed increased frequency of follicular plugs, patulous follicles and white rosettes. CONCLUSION: Dermoscopy is widely gaining importance in the realm of dermatology. In this study, dermoscopy demonstrated characteristic patterns in LV. Thus, dermoscopy a non-invasive procedure can be used as diagnostic tool in many infective dermatoses.

6.
Atmos Chem Phys ; 20(2): 1021-1041, 2020.
Article in English | MEDLINE | ID: mdl-33777125

ABSTRACT

Oxidation of organic compounds in the atmosphere produces an immensely complex mixture of product species, posing a challenge for both their measurement in laboratory studies and their inclusion in air quality and climate models. Mass spectrometry techniques can measure thousands of these species, giving insight into these chemical processes, but the datasets themselves are highly complex. Data reduction techniques that group compounds in a chemically and kinetically meaningful way provide a route to simplify the chemistry of these systems but have not been systematically investigated. Here we evaluate three approaches to reducing the dimensionality of oxidation systems measured in an environmental chamber: positive matrix factorization (PMF), hierarchical clustering analysis (HCA), and a parameterization to describe kinetics in terms of multigenerational chemistry (gamma kinetics parameterization, GKP). The evaluation is implemented by means of two datasets: synthetic data consisting of a three-generation oxidation system with known rate constants, generation numbers, and chemical pathways; and the measured products of OH-initiated oxidation of a substituted aromatic compound in a chamber experiment. We find that PMF accounts for changes in the average composition of all products during specific periods of time but does not sort compounds into generations or by another reproducible chemical process. HCA, on the other hand, can identify major groups of ions and patterns of behavior and maintains bulk chemical properties like carbon oxidation state that can be useful for modeling. The continuum of kinetic behavior observed in a typical chamber experiment can be parameterized by fitting species' time traces to the GKP, which approximates the chemistry as a linear, first-order kinetic system. The fitted parameters for each species are the number of reaction steps with OH needed to produce the species (the generation) and an effective kinetic rate constant that describes the formation and loss rates of the species. The thousands of species detected in a typical laboratory chamber experiment can be organized into a much smaller number (10-30) of groups, each of which has a characteristic chemical composition and kinetic behavior. This quantitative relationship between chemical and kinetic characteristics, and the significant reduction in the complexity of the system, provides an approach to understanding broad patterns of behavior in oxidation systems and could be exploited for mechanism development and atmospheric chemistry modeling.

8.
Environ Sci Technol ; 53(21): 12366-12378, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31490675

ABSTRACT

Glass transitions of secondary organic aerosols (SOA) from liquid/semisolid to solid phase states have important implications for aerosol reactivity, growth, and cloud formation properties. In the present study, glass transition temperatures (Tg) of isoprene SOA components, including isoprene hydroxy hydroperoxide (ISOPOOH), isoprene-derived epoxydiols (IEPOX), 2-methyltetrols, and 2-methyltetrol sulfates, were measured at atmospherically relevant cooling rates (2-10 K/min) by thin film broadband dielectric spectroscopy. The results indicate that 2-methyltetrol sulfates have the highest glass transition temperature, while ISOPOOH has the lowest glass transition temperature. By varying the cooling rate of the same compound from 2 to 10 K/min, the Tg of these compounds increased by 4-5 K. This temperature difference leads to a height difference of 400-800 m in the atmosphere for the corresponding updraft induced cooling rates, assuming a hygroscopicity value (κ) of 0.1 and relative humidity less than 95%. The Tg of the organic compounds was found to be strongly correlated with volatility, and a semiempirical formula between glass transition temperatures and volatility was derived. The Gordon-Taylor equation was applied to calculate the effect of relative humidity (RH) and water content at five mixing ratios on the Tg of organic aerosols. The model shows that Tg could drop by 15-40 K as the RH changes from <5 to 90%, whereas the mixing ratio of water in the particle increases from 0 to 0.5. These results underscore the importance of chemical composition, updraft rates, and water content (RH) in determining the phase states and hygroscopic properties of organic particles.


Subject(s)
Atmosphere , Dielectric Spectroscopy , Aerosols , Phase Transition , Volatilization
9.
Atmos Chem Phys ; 19(23): 15117-15129, 2019.
Article in English | MEDLINE | ID: mdl-32256548

ABSTRACT

Aromatic hydrocarbons make up a large fraction of anthropogenic volatile organic compounds and contribute significantly to the production of tropospheric ozone and secondary organic aerosol (SOA). Four toluene and four 1,2,4-trimethylbenzene (1,2,4-TMB) photooxidation experiments were performed in an environmental chamber under relevant polluted conditions (NO x ~ 10ppb). An extensive suite of instrumentation including two proton-transfer-reaction mass spectrometers (PTR-MS) and two chemical ionisation mass spectrometers ( NH 4 + CIMS and I- CIMS) allowed for quantification of reactive carbon in multiple generations of hydroxyl radical (OH)-initiated oxidation. Oxidation of both species produces ring-retaining products such as cresols, benzaldehydes, and bicyclic intermediate compounds, as well as ring-scission products such as epoxides and dicarbonyls. We show that the oxidation of bicyclic intermediate products leads to the formation of compounds with high oxygen content (an O : C ratio of up to 1.1). These compounds, previously identified as highly oxygenated molecules (HOMs), are produced by more than one pathway with differing numbers of reaction steps with OH, including both auto-oxidation and phenolic pathways. We report the elemental composition of these compounds formed under relevant urban high-NO conditions. We show that ring-retaining products for these two precursors are more diverse and abundant than predicted by current mechanisms. We present the speciated elemental composition of SOA for both precursors and confirm that highly oxygenated products make up a significant fraction of SOA. Ring-scission products are also detected in both the gas and particle phases, and their yields and speciation generally agree with the kinetic model prediction.

10.
Nat Chem ; 10(4): 462-468, 2018 04.
Article in English | MEDLINE | ID: mdl-29483638

ABSTRACT

The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs-volatile oxidized gases and low-volatility particulate matter.

11.
Environ Sci Technol ; 51(15): 8491-8500, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28644613

ABSTRACT

We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ∼20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions.


Subject(s)
Aerosols , Organic Chemicals , Mass Spectrometry , Thermography , Volatilization
12.
Environ Sci Technol ; 51(11): 5932-5940, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28445044

ABSTRACT

Highly oxygenated multifunctional organic compounds (HOMs) originating from biogenic emissions constitute a widespread source of organic aerosols in the pristine atmosphere. However, the molecular forms in which HOMs are present in the condensed phase upon gas-particle partitioning remain unclear. In this study, we show that highly oxygenated molecules that contain multiple peroxide functionalities are readily cationized by the attachment of Na+ during electrospray ionization operated in the positive ion mode. With this method, we present the first identification of HOMs characterized as C8-10H12-18O4-9 monomers and C16-20H24-36O8-14 dimers in α-pinene derived secondary organic aerosol (SOA). Simultaneous detection of these molecules in the gas phase provides direct evidence for their gas-to-particle conversion. Molecular properties of particulate HOMs generated from ozonolysis and OH oxidation of unsubstituted (C10H16) and deuterated (C10H13D3) α-pinene are investigated using coupled ion mobility spectrometry with mass spectrometry. The systematic shift in the mass of monomers in the deuterated system is consistent with the decomposition of isomeric vinylhydroperoxides to release vinoxy radical isotopologues, the precursors to a sequence of autoxidation reactions that ultimately yield HOMs in the gas phase. The remarkable difference observed in the dimer abundance under O3- versus OH-dominant environments underlines the competition between intramolecular hydrogen migration of peroxy radicals and their bimolecular termination reactions. Our results provide new and direct molecular-level information for a key component needed for achieving carbon mass closure of α-pinene SOA.


Subject(s)
Aerosols , Air Pollutants , Monoterpenes , Bicyclic Monoterpenes , Ozone
13.
Environ Sci Technol ; 50(19): 10494-10503, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27626106

ABSTRACT

Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation monitor (ACSM) mass spectra are widely used to quantify organic aerosol (OA) elemental composition, oxidation state, and major environmental sources. The OA CO2+ fragment is among the most important measurements for such analyses. Here, we show that a non-OA CO2+ signal can arise from reactions on the particle vaporizer, ion chamber, or both, induced by thermal decomposition products of inorganic salts. In our tests (eight instruments, n = 29), ammonium nitrate (NH4NO3) causes a median CO2+ interference signal of +3.4% relative to nitrate. This interference is highly variable between instruments and with measurement history (percentiles P10-90 = +0.4 to +10.2%). Other semi-refractory nitrate salts showed 2-10 times enhanced interference compared to that of NH4NO3, while the ammonium sulfate ((NH4)2SO4) induced interference was 3-10 times lower. Propagation of the CO2+ interference to other ions during standard AMS and ACSM data analysis affects the calculated OA mass, mass spectra, molecular oxygen-to-carbon ratio (O/C), and f44. The resulting bias may be trivial for most ambient data sets but can be significant for aerosol with higher inorganic fractions (>50%), e.g., for low ambient temperatures, or laboratory experiments. The large variation between instruments makes it imperative to regularly quantify this effect on individual AMS and ACSM systems.


Subject(s)
Aerosols , Mass Spectrometry , Carbon , Sodium Chloride , Sodium Chloride, Dietary
14.
Environ Sci Technol ; 50(18): 9889-99, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27466979

ABSTRACT

Atmospheric oxidation of isoprene under low-NOx conditions leads to the formation of isoprene hydroxyhydroperoxides (ISOPOOH). Subsequent oxidation of ISOPOOH largely produces isoprene epoxydiols (IEPOX), which are known secondary organic aerosol (SOA) precursors. Although SOA from IEPOX has been previously examined, systematic studies of SOA characterization through a non-IEPOX route from 1,2-ISOPOOH oxidation are lacking. In the present work, SOA formation from the oxidation of authentic 1,2-ISOPOOH under low-NOx conditions was systematically examined with varying aerosol compositions and relative humidity. High yields of highly oxidized compounds, including multifunctional organosulfates (OSs) and hydroperoxides, were chemically characterized in both laboratory-generated SOA and fine aerosol samples collected from the southeastern U.S. IEPOX-derived SOA constituents were observed in all experiments, but their concentrations were only enhanced in the presence of acidified sulfate aerosol, consistent with prior work. High-resolution aerosol mass spectrometry (HR-AMS) reveals that 1,2-ISOPOOH-derived SOA formed through non-IEPOX routes exhibits a notable mass spectrum with a characteristic fragment ion at m/z 91. This laboratory-generated mass spectrum is strongly correlated with a factor recently resolved by positive matrix factorization (PMF) of aerosol mass spectrometer data collected in areas dominated by isoprene emissions, suggesting that the non-IEPOX pathway could contribute to ambient SOA measured in the Southeastern United States.


Subject(s)
Aerosols , Atmosphere/chemistry , Mass Spectrometry , Oxidation-Reduction , Sulfates/chemistry
15.
Adv Physiol Educ ; 39(4): 367-71, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26628661

ABSTRACT

PowerPoint presentations (PPTs) have become routine in medical colleges because of their flexible and varied presentation capabilities. Research indicates that students prefer PPTs over the chalk-and-talk method, and there is a lot of debate over advantages and disadvantages of PPTs. However, there is no clear evidence that PPTs improve student learning/performance. Furthermore, there are a variety of learning styles with sex differences in classrooms. It is the responsibility of teacher/facilitator and student to be aware of learning style preferences to improve learning. The present study asked the following research question: do PPTs equally affect the learning of students with different learning styles in a mixed sex classroom? After we assessed students' predominant learning style according to the sensory modality that one most prefers to use when learning, a test was conducted before and after a PPT to assess student performance. The results were analyzed using Student's t-test and ANOVA with a Bonferroni post hoc test. A z-test showed no sex differences in preferred learning styles. There was significant increase in posttest performance compared with that of the pretest in all types of learners of both sexes. There was also a nonsignificant relationship among sex, learning style, and performance after the PPT. A PPT is equally effective for students with different learning style preferences and supports mixed sex classrooms.


Subject(s)
Audiovisual Aids , Auditory Perception , Education, Professional/methods , Learning , Physiology/education , Students, Health Occupations/psychology , Teaching/methods , Visual Perception , Comprehension , Curriculum , Educational Measurement , Educational Status , Female , Humans , Male , Reading , Sex Factors , Surveys and Questionnaires , Writing
16.
Environ Sci Technol ; 49(17): 10330-9, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26207427

ABSTRACT

Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 µg m(-3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases. The SOA formation in this study is separate from previously described isoprene epoxydiol (IEPOX) uptake. Assigning all condensing LVOC signals to 4,3-ISOPOOH oxidation in the chamber study implies a wall-loss corrected non-IEPOX SOA mass yield of ∼4%. By contrast to monoterpene oxidation, in which extremely low volatility VOC (ELVOC) constitute the organic aerosol, in the isoprene system LVOC with saturation concentrations from 10(-2) to 10 µg m(-3) are the main constituents. These LVOC may be important for the growth of nanoparticles in environments with low OA concentrations. LVOC observed in the chamber were also observed in the atmosphere during SOAS-2013 in the Southeastern United States, with the expected diurnal cycle. This previously uncharacterized aerosol formation pathway could account for ∼5.0 Tg yr(-1) of SOA production, or 3.3% of global SOA.


Subject(s)
Aerosols/analysis , Butadienes/analysis , Hemiterpenes/analysis , Hydrogen Peroxide/analysis , Organic Chemicals/analysis , Pentanes/analysis , Volatile Organic Compounds/analysis , Atmosphere/chemistry , Models, Theoretical , Nitric Oxide/chemistry , Oxidation-Reduction , Southeastern United States , Time Factors , Vapor Pressure , Volatilization
17.
J Phys Chem A ; 119(7): 1154-63, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25654760

ABSTRACT

The atmospheric aging of soot particles, in which various atmospheric processes alter the particles' chemical and physical properties, is poorly understood and consequently is not well-represented in models. In this work, soot aging via heterogeneous oxidation by OH and ozone is investigated using an aerosol flow reactor coupled to a new high-resolution aerosol mass spectrometric technique that utilizes infrared vaporization and single-photon vacuum ultraviolet ionization. This analytical technique simultaneously measures the elemental and organic carbon components of soot, allowing for the composition of both fractions to be monitored. At oxidant exposures relevant to the particles' atmospheric lifetimes (the equivalent of several days of oxidation), the elemental carbon portion of the soot, which makes up the majority of the particle mass, undergoes no discernible changes in mass or composition. In contrast, the organic carbon (which in the case of methane flame soot is dominated by aliphatic species) is highly reactive, undergoing first the addition of oxygen-containing functional groups and ultimately the loss of organic carbon mass from fragmentation reactions that form volatile products. These changes occur on time scales comparable to those of other nonoxidative aging processes such as condensation, suggesting that further research into the combined effects of heterogeneous and condensational aging is needed to improve our ability to accurately predict the climate and health impacts of soot particles.


Subject(s)
Soot/chemistry , Atmosphere/chemistry , Oxidation-Reduction
18.
J Phys Chem A ; 119(19): 4589-99, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25526741

ABSTRACT

Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores tested in these studies include black carbon, silver, gold, and platinum nanoparticles. These results demonstrate that SP vaporization is capable of providing enhanced organic chemical composition information for a wide range of organic coating materials and IR absorbing particle cores. The potential of using this technique to study organic species of interest in seeded laboratory chamber or flow reactor studies is discussed.


Subject(s)
Aerosols/analysis , Mass Spectrometry/methods , Soot/analysis , Carbon/analysis , Cations/analysis , Citric Acid/analysis , Ethylenes/analysis , Fullerenes/analysis , Gold Compounds/chemistry , Metal Nanoparticles/chemistry , Platinum Compounds/chemistry , Silver Compounds/chemistry , Temperature , Ultraviolet Rays , Vacuum , Volatilization
19.
Environ Sci Technol ; 47(11): 5686-94, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23638946

ABSTRACT

Real-time continuous chemical measurements of fine aerosol were made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer and fall 2011 in downtown Atlanta, Georgia. Organic mass spectra measured by the ACSM were analyzed by positive matrix factorization (PMF), yielding three conventional factors: hydrocarbon-like organic aerosol (HOA), semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA). An additional OOA factor that contributed to 33 ± 10% of the organic mass was resolved in summer. This factor had a mass spectrum that strongly correlated (r(2) = 0.74) to that obtained from laboratory-generated secondary organic aerosol (SOA) derived from synthetic isoprene epoxydiols (IEPOX). Time series of this additional factor is also well correlated (r(2) = 0.59) with IEPOX-derived SOA tracers from filters collected in Atlanta but less correlated (r(2) < 0.3) with a methacrylic acid epoxide (MAE)-derived SOA tracer, α-pinene SOA tracers, and a biomass burning tracer (i.e., levoglucosan), and primary emissions. Our analyses suggest IEPOX as the source of this additional factor, which has some correlation with aerosol acidity (r(2) = 0.3), measured as H(+) (nmol m(-3)), and sulfate mass loading (r(2) = 0.48), consistent with prior work showing that these two parameters promote heterogeneous chemistry of IEPOX to form SOA.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Butadienes/chemistry , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Epoxy Compounds/chemistry , Hemiterpenes/chemistry , Pentanes/chemistry , Air Pollutants/chemistry , Atmosphere , Bicyclic Monoterpenes , Cities , Georgia , Mass Spectrometry/methods , Mass Spectrometry/standards , Monoterpenes/chemistry , Reference Standards , Seasons
20.
Environ Sci Technol ; 46(10): 5430-7, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22534114

ABSTRACT

Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.


Subject(s)
Aerosols/analysis , Alkanes/chemistry , Hydroxyl Radical/chemistry , Laboratories , Organic Chemicals/analysis , Carbon/analysis , Mass Spectrometry , Mexico , Oxidation-Reduction , Oxygen/analysis , Petroleum Pollution/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...