Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 125(24): 5256-5272, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34115503

ABSTRACT

In this work using first-principles calculations based on spin-polarized density functional theory (DFT), the role of the Cu atom in degrading the poisoning of carbon monoxide (CO) over NinCu clusters is unveiled. The search has been initiated with the examination of structural, magnetic, and electronic properties of Nin+1 and NinCu clusters (1 ≤ n ≤ 12). X-ray absorption near-edge structure (XANES) spectra of Ni K-edge are computed to extract the information on the oxidation states and coordination environment of metal sites of the clusters. This study is operated with the two forms of dispersion corrections, i.e., D2 and D3, with standard DFT (with LDA and GGA functionals) for the consideration of van der Waals interactions during CO adsorption. The PBE and PBE-D3 approaches are found to be capable of yielding the experimentally observed preferential site for CO adsorption. The effect of spin-polarization on the reactivity of transition metals (TMs) toward CO adsorption is crucially assessed by the electronic reactivity descriptors such as d-band center, d-band width, and fractional filling of d-band using a spin-polarized d-band center model. The effective charge transfer from Cu to Ni atoms makes Ni atoms more efficient of charge and is attributed to the degrading adsorption of CO over NinCu clusters. The Ni12Cu cluster stands out with good CO oxidation activity for the Langmuir-Hinshelwood (L-H) reaction pathway.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117912, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31865109

ABSTRACT

In this work, we address the structural stability, electronic properties and effect of metal-metal interaction on Raman spectra of icosahedral (Ih) PdmCun (m + n = 13) clusters using first principles calculations based on dispersion-corrected density functional theory (DFT-D2). Initially, we investigated the relative stability of Ih PdmCun clusters over monometallic Ih Pd13 and Cu13 clusters by calculating the average binding energy per atom, mixing energy, second order energy difference and average bond length. The Ih Pd5Cu8 is the most stable bimetallic cluster with the 2.88 eV, -0.218 eV and 0.678 eV average binding energy per atom, mixing energy and second order energy difference, respectively. The main goals of the present study are to figure out the chemical enhancement, modulation in electronic properties and Pd-Cu bond length in Ih PdmCun clusters after systematic doping of Cu-atom. Further, to examine the doping effect of Cu atom in Pd cluster, we have also analysed the Raman spectra of Ih PdmCun clusters. In case of Ih Cu13 cluster, the contraction of Cu-Cu bond length as compared to its bulk form resulted in a significant blue-shift of characteristic Raman peak (212 cm-1) of Ih Pd13 cluster. Finally, the interaction mechanism of the CO2 gas molecule over Pd-Cu alloy clusters have also been studied to understand the effect of composition on reactivity of CO2 gas molecule.

3.
Beilstein J Org Chem ; 13: 222-238, 2017.
Article in English | MEDLINE | ID: mdl-28326131

ABSTRACT

New colorimetric receptors R1 and R2 with varied positional substitution of a cyano and nitro signaling unit having a hydroxy functionality as the hydrogen bond donor site have been designed, synthesized and characterized by FTIR, 1H NMR spectroscopy and mass spectrometry. The receptors R1 and R2 exhibit prominent visual response for F- and AcO- ions allowing the real time analysis of these ions in aqueous media. The formation of the receptor-anion complexes has been supported by UV-vis titration studies and confirmed through binding constant calculations. The anion binding process follows a first order rate equation and the calculated rate constants reveal a higher order of reactivity for AcO- ions. The 1H NMR titration and TDDFT studies provide full support of the binding mechanism. The Hg2+ and F- ion sensing property of receptor R1 has been utilized to arrive at "AND" and "INHIBIT" molecular logic gate applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...