Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Immunol ; 209(7): 1314-1322, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36165196

ABSTRACT

Postviral bacterial infections are a major health care challenge in coronavirus infections, including COVID-19; however, the coronavirus-specific mechanisms of increased host susceptibility to secondary infections remain unknown. In humans, coronaviruses, including SARS-CoV-2, infect lung immune cells, including alveolar macrophages, a phenotype poorly replicated in mouse models of SARS-CoV-2. To overcome this, we used a mouse model of native murine ß-coronavirus that infects both immune and structural cells to investigate coronavirus-enhanced susceptibility to bacterial infections. Our data show that coronavirus infection impairs the host ability to clear invading bacterial pathogens and potentiates lung tissue damage in mice. Mechanistically, coronavirus limits the bacterial killing ability of macrophages by impairing lysosomal acidification and fusion with engulfed bacteria. In addition, coronavirus-induced lysosomal dysfunction promotes pyroptotic cell death and the release of IL-1ß. Inhibition of cathepsin B decreased cell death and IL-1ß release and promoted bacterial clearance in mice with postcoronavirus bacterial infection.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Murine hepatitis virus , Animals , Bacteria , Cathepsin B , Humans , Lung , Lysosomes , Mice , SARS-CoV-2
2.
Nat Commun ; 13(1): 1638, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347138

ABSTRACT

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identify two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generate a bispecific antibody. Lead antibodies show strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solve several cryo-EM structures at ~3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and reveal distinct epitopes, binding patterns, and conformations. The lead clones also show potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generate and characterize a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
3.
Nat Ecol Evol ; 5(7): 1011-1023, 2021 07.
Article in English | MEDLINE | ID: mdl-33986540

ABSTRACT

Directed evolution has been used for decades to engineer biological systems at or below the organismal level. Above the organismal level, a small number of studies have attempted to artificially select microbial ecosystems, with uneven and generally modest success. Our theoretical understanding of artificial ecosystem selection is limited, particularly for large assemblages of asexual organisms, and we know little about designing efficient methods to direct their evolution. Here, we have developed a flexible modelling framework that allows us to systematically probe any arbitrary selection strategy on any arbitrary set of communities and selected functions. By artificially selecting hundreds of in silico microbial metacommunities under identical conditions, we first show that the main breeding methods used to date, which do not necessarily let communities reach their ecological equilibrium, are outperformed by a simple screen of sufficiently mature communities. We then identify a range of alternative directed evolution strategies that, particularly when applied in combination, are well suited for the top-down engineering of large, diverse and stable microbial consortia. Our results emphasize that directed evolution allows an ecological structure-function landscape to be navigated in search of dynamically stable and ecologically resilient communities with desired quantitative attributes.


Subject(s)
Ecosystem
4.
bioRxiv ; 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34981065

ABSTRACT

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identified two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generated a bispecific antibody. Lead antibodies showed strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solved several cryo-EM structures at ∼3 Šresolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and revealed distinct epitopes, binding patterns, and conformations. The lead clones also showed potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generated and characterized a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.

5.
Cell ; 184(1): 76-91.e13, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33147444

ABSTRACT

Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.


Subject(s)
Coronavirus Infections/genetics , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus/classification , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Gene Knockout Techniques , Gene Regulatory Networks , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Host-Pathogen Interactions/drug effects , Humans , Vero Cells , Virus Internalization
6.
bioRxiv ; 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32869025

ABSTRACT

Identification of host genes essential for SARS-CoV-2 infection may reveal novel therapeutic targets and inform our understanding of COVID-19 pathogenesis. Here we performed a genome-wide CRISPR screen with SARS-CoV-2 and identified known SARS-CoV-2 host factors including the receptor ACE2 and protease Cathepsin L. We additionally discovered novel pro-viral genes and pathways including the SWI/SNF chromatin remodeling complex and key components of the TGF-ß signaling pathway. Small molecule inhibitors of these pathways prevented SARS-CoV-2-induced cell death. We also revealed that the alarmin HMGB1 is critical for SARS-CoV-2 replication. In contrast, loss of the histone H3.3 chaperone complex sensitized cells to virus-induced death. Together this study reveals potential therapeutic targets for SARS-CoV-2 and highlights host genes that may regulate COVID-19 pathogenesis.

7.
Article in English | MEDLINE | ID: mdl-32266164

ABSTRACT

Elite controllers or suppressors (ES) are HIV-1 infected individuals who maintain undetectable viral loads without anti-retroviral therapy. The HLA-B*57 allele is overrepresented in ES suggesting a role for HIV-specific CD8+ T cells in immune control. Natural killer (NK) cells also play a role in controlling viral replication, and genetic studies demonstrate that specific combinations of killer cell immunoglobulin-like receptor (KIR) alleles and HLA subtypes including HLA-B*57 correlate with delayed progression to AIDS. While prior studies have shown that both HIV-specific CD8+ T cells and NK cells can inhibit viral replication in vitro, the interaction between these two effector cells has not been studied. We performed in vitro suppression assays using CD8+ T cells and NK cells from HLA-B*57 ES either alone or in combination with each other. We found no evidence of antagonism or synergy between the CD8+ T cells and NK cells, suggesting that they have independent mechanisms of inhibition in vitro. Our data has implications for combined immunotherapy with CD8+ T cells and NK cells in HIV cure strategies.


Subject(s)
HIV Infections , HIV-1 , CD8-Positive T-Lymphocytes , HLA-B Antigens , Humans , Killer Cells, Natural , Virus Replication
8.
J Clin Invest ; 129(11): 4786-4796, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31408439

ABSTRACT

A vaccine for hepatitis C virus (HCV) is urgently needed. Development of broadly-neutralizing plasma antibodies during acute infection is associated with HCV clearance, but the viral epitopes of these plasma antibodies are unknown. Identification of these epitopes could define the specificity and function of neutralizing antibodies (NAbs) that should be induced by a vaccine. Here, we present development and application of a high-throughput method that deconvolutes polyclonal anti-HCV NAbs in plasma, delineating the epitope specificities of anti-HCV NAbs in acute infection plasma of forty-four humans with subsequent clearance or persistence of HCV. Remarkably, we identified multiple broadly neutralizing antibody (bNAb) combinations that were associated with greater plasma neutralizing breadth and with HCV clearance. These studies have potential to inform new strategies for vaccine development by identifying bNAb combinations in plasma associated with natural clearance of HCV, while also providing a high-throughput assay that could identify these responses after vaccination trials.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Epitopes/immunology , Hepacivirus/immunology , Hepatitis C Antibodies/immunology , Viral Hepatitis Vaccines/immunology , Cell Line, Tumor , Female , Humans , Male , Viral Hepatitis Vaccines/administration & dosage
9.
Proc Natl Acad Sci U S A ; 116(27): 13474-13479, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31213541

ABSTRACT

A major obstacle to vaccination against antigenically variable viruses is skewing of antibody responses to variable immunodominant epitopes. For influenza virus hemagglutinin (HA), the immunodominance of the variable head impairs responses to the highly conserved stem. Here, we show that head immunodominance depends on the physical attachment of head to stem. Stem immunogenicity is enhanced by immunizing with stem-only constructs or by increasing local HA concentration in the draining lymph node. Surprisingly, coimmunization of full-length HA and stem alters stem-antibody class switching. Our findings delineate strategies for overcoming immunodominance, with important implications for human vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Epitopes/immunology , Hemagglutinins/immunology , Immunodominant Epitopes/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Animals , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Female , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Stem Cells/immunology
10.
Proc Natl Acad Sci U S A ; 115(1): E82-E91, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29255018

ABSTRACT

There is an urgent need for a vaccine to combat the hepatitis C virus (HCV) pandemic, and induction of broadly neutralizing monoclonal antibodies (bNAbs) against HCV is a major goal of vaccine development. Even within HCV genotype 1, no single bNAb effectively neutralizes all viral strains, so induction of multiple neutralizing monoclonal antibodies (NAbs) targeting distinct epitopes may be necessary for protective immunity. Therefore, identification of optimal NAb combinations and characterization of NAb interactions can guide vaccine development. We analyzed neutralization profiles of 12 human NAbs across diverse HCV strains, assigning the NAbs to two functionally distinct clusters. We then measured neutralizing breadth of 35 NAb combinations against genotype 1 isolates, with each combination including one NAb from each neutralization cluster. Many NAbs displayed complementary neutralizing breadth, forming combinations with greater neutralization across diverse strains than any individual bNAb. Remarkably, one of the most broadly neutralizing combinations of two NAbs, designated HEPC74/HEPC98, also displayed enhanced potency, with interactions matching the Bliss independence model, suggesting that these NAbs inhibit HCV infection through independent mechanisms. Subsequent experiments showed that HEPC74 primarily blocks HCV envelope protein binding to CD81, while HEPC98 primarily blocks binding to scavenger receptor B1 and heparan sulfate. Together, these data identify a critical vulnerability resulting from the reliance of HCV on multiple cell surface receptors, suggesting that vaccine induction of multiple NAbs with distinct neutralization profiles is likely to enhance the breadth and potency of the humoral immune response against HCV.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Hepacivirus/immunology , Hepatitis Antibodies/immunology , Hepatitis C/immunology , HEK293 Cells , Hepatitis C/prevention & control , Humans , Viral Hepatitis Vaccines/immunology
11.
PLoS Pathog ; 13(2): e1006235, 2017 02.
Article in English | MEDLINE | ID: mdl-28235087

ABSTRACT

Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 µg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.


Subject(s)
Antibodies, Neutralizing/immunology , Hepacivirus/genetics , Hepatitis C Antibodies/immunology , Immune Evasion/immunology , Polymorphism, Genetic , Scavenger Receptors, Class B/metabolism , Algorithms , Amino Acid Sequence , Enzyme-Linked Immunosorbent Assay , Hepacivirus/immunology , Hepacivirus/metabolism , Hepatitis C/immunology , High-Throughput Nucleotide Sequencing , Humans , Mutagenesis, Site-Directed , Neutralization Tests , Phylogeny , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...