Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sports Biomech ; : 1-19, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38250792

ABSTRACT

This study aimed to investigate the essential role of the kicking action in front crawl. To achieve this objective, we examined the relationships of the hand propulsive force and trunk inclination with swimming velocity over a wide range of velocities from 0.75 m·s-1 to maximum effort, including the experimental conditions of arm stroke without a pull buoy. Seven male swimmers performed a 25 m front crawl at various speeds under three swimming conditions: arm stroke with a pull buoy, arm stroke without a pull buoy (AWOB) and arm stroke with a six-beat kick (SWIM). Swimming velocity, hand propulsive force and trunk inclination were calculated using an underwater motion-capture system and pressure sensors. Most notably, AWOB consistently exhibited greater values than SWIM for hand propulsive force across the range of observed velocities (p < 0.05) and for trunk inclination below the severe velocity (p < 0.05), and these differences increased with decreasing velocity. These results indicate that 1) the kicking action in front crawl has a positive effect on reducing the pressure drag acting on the trunk, thereby allowing swimmers to achieve a given velocity with less hand propulsive force, and 2) this phenomenon is significant in low-velocity ranges.

2.
J Sports Sci ; 41(4): 372-380, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37204110

ABSTRACT

We attempted to find a subset model that would allow robust prediction of a swimmer's vertical body position during front crawl with fewer markers, which can reduce extra drag and time-consuming measurements. Thirteen male swimmers performed a 15-metre front crawl either with three different lung-volume levels or various speeds, or both, without taking a breath with 36 reflective markers. The vertical positions of the centre of mass (CoM) and four representative landmarks in the trunk segment over a stroke cycle were calculated using an underwater motion-capture system. We obtained 212 stroke cycles across trials and analysed the vertical position derived from 15 patterns as candidates for the subset models. Unconstrained optimisation minimises the root-mean-square error between the vertical CoM position and each subset model. The performance evaluated from the intra-class correlation coefficient (ICC) and weight parameters of each subset model were detected from the mean values across five-fold cross-validation. The subset model with four markers attached to the trunk segment showed good reliability (ICC: 0.776 ± 0.019). This result indicates that the subset model with few markers can robustly predict a male swimmer's vertical CoM position during front crawl under a wide range of speeds from 0.66 to 1.66 m · s-1.


Subject(s)
Posture , Swimming , Humans , Male , Biomechanical Phenomena , Reproducibility of Results , Motion Capture
3.
Sensors (Basel) ; 22(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36081152

ABSTRACT

Propulsive force is a determinant of swimming performance. Several methods have been proposed to estimate the propulsive force in human swimming; however, their practical use in coaching is limited. Herein, we propose a novel method for estimating the propulsive force generated by swimmers' hands using an inertial measurement unit (IMU) and pressure sensors. In Experiment 1, we use a hand model to examine the effect of a hand-mounted IMU on pressure around the hand model at several flow velocities and water flow directions. In Experiment 2, we compare the propulsive force estimated using the IMU and pressure sensors (FIMU) via an underwater motion-capture system and pressure sensors (FMocap). Five swimmers had markers, pressure sensors, and IMUs attached to their hands and performed front crawl swimming for 25 m twice at each of nine different swimming speeds. The results show that the hand-mounted IMU affects the resultant force; however, the effect of the hand-mounted IMU varies with the flow direction. The mean values of FMocap and FIMU are similar (19.59 ± 7.66 N and 19.36 ± 7.86 N, respectively; intraclass correlation coefficient(2,1) = 0.966), and their waveforms are similar (coefficient of multiple correlation = 0.99). These results indicate that the IMU can estimate the same level of propulsive force as an underwater motion-capture system.


Subject(s)
Hand , Upper Extremity , Biomechanical Phenomena , Humans , Swimming
4.
Scand J Med Sci Sports ; 32(12): 1724-1737, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36086887

ABSTRACT

We examined the influence of lung volume on the vertical body position, trunk inclination, and projected frontal area (PFA) during swimming and the inter-relationships among these factors. Twelve highly trained male swimmers performed a 15 m front crawl with sustained maximal inspiration (INSP), maximal expiration (EXP), and intermediate (MID) at a target velocity of 1.20 m·s-1 . Using our developed digital human model, which allows inverse kinematics calculations by fitting individual body shapes measured with a three-dimensional photonic image scanner to individually measured underwater motion capture data, vertical center of mass (CoM) position, trunk inclination, and PFA were calculated for each complete stroke cycle. In particular, the PFA was calculated by automatic processing of a series of parallel frontal images obtained from a reconstructed digital human model. The vertical CoM position was higher with a larger lung-volume level (p < 0.01). The trunk inclination was smaller in INSP and MID than in EXP (p < 0.01). PFA was smaller with a larger lung-volume level (p < 0.01). Additionally, there was a significant interaction of vertical CoM position and trunk inclination with PFA (p = 0.006). There was a negative association between PFA and vertical CoM position, and a positive association between PFA and trunk inclination less than the moderate vertical CoM position (each p < 0.05). These results obtained using our methodology indicate that PFA decreases with increasing lung volume due to an increase in vertical CoM position, and additionally due to a decrease in trunk inclination at low-to-moderate lung-volume levels.


Subject(s)
Posture , Swimming , Humans , Male , Biomechanical Phenomena , Lung Volume Measurements
5.
Sports Biomech ; : 1-13, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35575440

ABSTRACT

Vertical body position during swimming is assumed to closely affect drag. It is consequently associated with swimming velocity; however, the association between swimming velocity and vertical body position has not yet been sufficiently established. Here, we aimed to clarify how vertical body position increases with front crawl velocity and whether there are inter-individual differences in velocity effect. Eleven college-level male swimmers performed a 15 m front crawl with sustained forced maximal inspiration at various swimming velocities. The body's centre of mass (CoM) was estimated from individual digital human models with inertial parameters using inverse kinematics. The horizontal CoM velocity and vertical CoM position from the water surface were averaged for one stroke cycle as respective indexes of swimming velocity and vertical body position. Linear mixed-effects model analysis revealed that there is a positive trend between swimming velocity and vertical CoM position during front crawl across the participants. These results indicate that swimming velocity is associated with vertical body position during front crawl. Additionally, the linear mixed-effects model with random intercepts and slopes was a better fit than that with only random intercepts, indicating that there are inter-individual differences in the rate of increase in vertical body position against swimming velocity.

6.
J Biomech ; 121: 110428, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33873108

ABSTRACT

We examined the impact of lung-volume levels on the vertical center of mass (CoM) position and kinematics during submaximal front-crawl swimming at constant velocity. Thirteen well-trained male swimmers (21.2 ± 2.0 years) swam the front-crawl for 15 m at a target velocity of 1.20 m s-1 while holding one of three lung-volume levels: maximal inspiration (MAX), maximal expiration (MIN), and intermediate between these (MID). The three-dimensional positions of 25 reflective markers attached to each participant's body were recorded using an underwater motion capture system and then used to estimate the body's CoM. The swimming velocity and the vertical CoM position relative to the water's surface were calculated and averaged for one stroke cycle. Stroke rate, stroke length, kick rate, kick amplitude, kick velocity, and trunk inclination were also calculated for one stroke cycle. Swimming velocity was statistically comparable among the three different lung-volume levels (ICC [2,3] = 0.875). The vertical CoM position was significantly decreased with the lower lung-volume level (MAX: -0.152 ± 0.009 m, MID: -0.163 ± 0.009 m, MIN: -0.199 ± 0.007 m, P < 0.001). Stroke rate, kick rate, kick amplitude, kick velocity, and trunk inclination were significantly higher in MIN than in MAX and MID, whereas the stroke length was significantly lower (all P < 0.05). These results indicate that a lower lung-volume level during submaximal front-crawl swimming induces a lower vertical CoM position that is accompanied by a modulation of the swimming kinematics to overcome the increased drag arising from a larger projected frontal area.


Subject(s)
Swimming , Torso , Biomechanical Phenomena , Biometry , Humans , Lung , Male
7.
Sports Biomech ; : 1-13, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33663333

ABSTRACT

We investigated the effects of jammer-type racing swimsuits (RS) on swimming performance during arm-stroke-only (pull) and whole-body stroke (swim) in 25-m front-crawl with maximal effort. Twelve well-trained male collegiate swimmers wore RS and a conventional swimsuit (CS) and performed three tests: pull, swim, and pull using the system to measure active drag (MAD pull). Swimming velocity and intra-abdominal pressure (IAP) were determined in all tests. Stroke indices during pull and swim and drag-swimming velocity relationship and maximum propulsive power during MAD pull were also determined. Swimming velocities during pull and swim while wearing an RS (1.59 ± 0.13 and 1.77 ± 0.09 m·s-1, respectively) were significantly higher than those wearing a CS (1.57 ± 0.14 and 1.74 ± 0.08 m·s-1, respectively). Stroke length during pull and swim was significantly greater while wearing an RS (1.68 ± 0.12 and 1.83 ± 0.13 m, respectively) than wearing a CS (1.63 ± 0.10 and 1.81 ± 0.13 m, respectively). However, no significant differences were confirmed between the other variables in all tests. In conclusion, swimming performance is improved when wearing an RS compared with a CS.

8.
J Biomech ; 91: 109-113, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31138476

ABSTRACT

The present study aimed to clarify whether swimming performance is affected by reflective markers being attached to the swimmer's body, as is required for a kinematic analysis of swimming. Fourteen well-trained male swimmers (21.1 ±â€¯1.7 yrs) performed maximal 50 m front crawl swimming with (W) and without (WO) 25 reflective markers attached to their skin and swimwear. This number represents the minimum required to estimate the body's center of mass. Fifty meter swimming time, mid-pool swimming velocity, stroke rate, and stroke length were determined using video analysis. We found swimming time to be 3.9 ±â€¯1.6% longer for W condition. Swimming velocity (3.3 ±â€¯1.8%), stroke rate (1.2 ±â€¯2.0%), and stroke length (2.1 ±â€¯2.7%) were also significantly lower for W condition. To elucidate whether the observed reduction in performance was potentially owing to an additional drag force induced by the reflective markers, measured swimming velocity under W condition was compared to a predicted velocity that was calculated based on swimming velocity obtained under WO condition and an estimate of the additional drag force induced by the reflective markers. The mean prediction error and ICC (2,1) for this analysis of measured and predicted velocities was 0.014 m s-1 and 0.894, respectively. Reducing the drag force term led to a decrease in the degree of agreement between the velocities. Together, these results suggest that the reduction in swimming performance resulted, at least in part, from an additional drag force produced by the reflective markers.


Subject(s)
Athletic Performance , Mechanical Phenomena , Optical Devices , Swimming , Biomechanical Phenomena , Humans , Male
9.
Hum Mov Sci ; 64: 378-388, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30861470

ABSTRACT

Through pressure measurement and underwater motion capture analysis, this study aimed to elucidate the effects of hand paddles on hand propulsive forces, mechanical power, and Froude efficiency in arm-stroke-only front-crawl swimming at various velocities. Eight male swimmers swam under two conditions in randomized order, once using only their hands and once aided by hand paddles on both hands. Each participant swam 10 times a distance of 16 m in each condition, for a total of 20 trials. To elucidate the relationship between propulsive forces and swimming velocity, each participant was instructed to swim each of the two sets of 10 trials at an arbitrarily different swimming velocity. During the trials, pressure sensors and underwater motion capture cameras were used together to analyze the pressure forces acting on the hand and hand kinematics, respectively. Six pressure sensors were attached to the right hand, and pressure forces acting on the right hand were estimated by multiplying the areas with the pressure differences between the palm and dorsal side of the hand. Acting directions of pressure forces were analyzed using a normal vector perpendicular to the hand or hand paddle, calculated from coordinates obtained using underwater motion capture analysis. As a result, there were no differences in propulsive forces and mechanical power to overcome water resistance (PD) with or without hand paddles at the same swimming velocities. However, the use of hand paddles decreased stroke rate and hand velocities, so mechanical power to push the water at the hand (PK) decreased. Using hand paddles thus increased Froude efficiency (ηF). These results suggest that training load decreases when swimmers swim at the same velocities while using hand paddles. This insight could prove useful for coaches and swimmers when using hand paddles for training to help ensure that they are used in accordance with their intended training purpose. If swimmers use hand paddles increasing propulsive force or PK, they should swim at a higher swimming velocity with hand paddles than without.


Subject(s)
Arm/physiology , Hand/physiology , Movement , Sports Equipment , Swimming/physiology , Adolescent , Biomechanical Phenomena , Humans , Male , Pressure , Rotation , Water , Young Adult
10.
Exp Physiol ; 104(4): 556-567, 2019 04.
Article in English | MEDLINE | ID: mdl-30714220

ABSTRACT

NEW FINDINGS: What is the central question of this study? What factors influence the onset and magnitude of activation of the neck inspiratory muscles during inspiration? What is the main finding and its importance? Recruitment of the sternocleidomastoid and scalene muscles during inspiration, measured by means of surface EMG, was strongly correlated with maximal inspiratory pressure. This result indicates that muscle recruitment depends on the capacity of an individual to generate inspiratory pressure. Surface measurements of neck inspiratory muscle EMG activity might complement tests currently used for the screening of respiratory-related disease. ABSTRACT: The aims of the present study were as follows: (i) to examine the relationship between the onset of recruitment of the neck inspiratory muscles and inspiratory muscle strength; and (ii) to clarify the effect of inspiratory resistance on neck inspiratory muscle activation during inspiration at specific flow rates and to specific lung volumes. Inspiratory muscle strength, as indicated by maximal inspiratory pressure (MIP), and peak inspiratory flow rate (PFR) were measured in healthy participants. Subsequently, participants inspired at target inspiratory flow rates between 20 and 100% of PFR as closely as possible, with and without artificial inspiratory resistance. Electromyographic activity (EMGRMS ) of the sternocleidomastoid and scalene muscles was measured from surface electrodes at each target flow rate for each 10% increment of forced vital capacity (FVC) between 20 and 50% of FVC. Recruitment onset for each muscle was determined from %PFR-EMGRMS curves at each lung volume (%FVC). Finally, linear regression analyses were performed for MIP and recruitment onset for each muscle at each %FVC. Recruitment onset during inspiration without inspiratory resistance was strongly correlated with MIP (r > 0.60, P < 0.040). Specifically, a lower MIP was associated with earlier muscle recruitment (i.e. recruitment at a lower flow rate), especially for the sternocleidomastoid muscle (r > 0.75, P < 0.005). Recruitment of both neck inspiratory muscles at a given flow rate was also earlier when inspiratory resistance was added (P = 0.002). These results indicate that the recruitment and activation of the neck inspiratory muscles depends on both inspiratory muscle strength and inspiratory resistance.


Subject(s)
Inhalation/physiology , Muscle Strength/physiology , Neck Muscles/physiology , Respiratory Muscles/physiology , Adult , Electromyography/methods , Humans , Lung/physiology , Male , Respiratory Rate/physiology , Tidal Volume/physiology , Young Adult
11.
Hum Mov Sci ; 57: 409-416, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29079453

ABSTRACT

Through pressure measurement, this study aimed to clarify the effects of hand paddle use on pressure and force generation around the hand during the front crawl. Eight male swimmers performed two trials of front crawl swimming with maximal effort, once using only their hands and once aided by hand paddles. During trials, pressure sensors and underwater motion capture cameras were used together to analyze hand kinematics and pressure forces acting on the hand. Six pressure sensors were attached to the right hand, and pressure forces acting on the right hand were estimated by multiplying the areas and the pressure differences between the palm side and dorsal side of the hand. Acting directions of pressure forces were analyzed using a normal vector perpendicular to the hand, calculated from coordinates of the right hand. As a result, using hand paddles decreases pressure differences between the palm and dorsal sides of hand related to the magnitude of pressure force. However, no difference was found in the mean value of resultant pressure forces compared with using hands alone, because the large surface area of the hand paddle compensated the decreased pressure differences due to decreased hand velocity. In addition, when hand paddles were used, the component of the pressure force acting in propulsive direction was significantly higher. Thus, the ratio of forces acting in the propulsive direction was higher than without hand paddles. These results suggest that the training loads with hand paddles are not high even if the swimming velocities increase because the power generated by upper limb motion didn't increase.


Subject(s)
Hand/physiology , Swimming/physiology , Upper Extremity/physiology , Biomechanical Phenomena , Humans , Male , Movement , Pressure , Rotation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...