Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Res Bull ; 48(1): 61-4, 1999 Jan 01.
Article in English | MEDLINE | ID: mdl-10210168

ABSTRACT

We hypothesized that the neuroprotection against cerebral hypoxic-ischemic damage observed with dexamethasone treatment in immature rats is related to a change in cerebral protein synthesis. Six-day-old Wistar rats were injected with either vehicle (10 ml/kg) or dexamethasone (0.1 mg/kg) 24 h prior to cerebral hypoxia-ischemia. Local cerebral protein synthesis (incorporation of 14C-leucine into proteins) was measured in 7-day-old rats during normoxia, during hypoxia-ischemia, and after hypoxia-ischemia which was produced with right carotid artery ligation and 2-h exposure to 8% O2. In normoxic controls, cerebral protein synthesis was similar in dexamethasone and vehicle-treated animals. During hypoxia-ischemia, local cerebral protein synthesis decreased markedly (p < 0.0001) in ischemic regions ipsilateral to the occlusion, irrespective of treatment. After hypoxia-ischemia, protein synthesis declined even further in vehicle-treated animals. Reductions in protein synthesis were substantially more severe in vehicle- than dexamethasone-treated animals, particularly after hypoxia-ischemia (p < 0.0001). Thus, neuroprotection with dexamethasone is not related to a reduction in basal levels of cerebral protein synthesis, but is associated with an improved protein synthesis during and following hypoxia-ischemia.


Subject(s)
Animals, Newborn/metabolism , Brain/metabolism , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Hypoxia/metabolism , Ischemic Attack, Transient/metabolism , Nerve Tissue Proteins/biosynthesis , Animals , Autoradiography , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL