Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(24): e2311362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38192000

ABSTRACT

For p-i-n perovskite solar cells (PSCs), nickel oxide (NiOx) hole transport layers (HTLs) are the preferred interfacial layer due to their low cost, high mobility, high transmittance, and stability. However, the redox reaction between the Ni≥3+ and hydroxyl groups in the NiOx and perovskite layer leads to oxidized CH3NH3 + and reacts with PbI in the perovskite, resulting in a large number of non-radiative recombination sites. Among various transition metals, an ultra-thin zinc nitride (Zn3N2) layer on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non-radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap-passivation ability. Consequently, Zn3N2-modified NiOx-based PSCs achieve a champion PCE of 21.61%, over the NiOx-based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions.

2.
ACS Appl Mater Interfaces ; 15(24): 29597-29608, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289997

ABSTRACT

Perovskite solar cells (PSCs) emerged as potential photovoltaic energy-generating devices developing in recent years because of their excellent photovoltaic properties and ease of processing. However, PSCs are still reporting efficiencies much lower than their theoretical limits owing to various losses caused by the charge transport layer and the perovskite. In this regard, herein, an interface engineering strategy using functional molecules and chemical bridges was applied to reduce the loss of the heterojunction electron transport layer. As a functional interface layer, ethylenediaminetetraacetic acid (EDTA) was introduced between PCBM and the ZnO layer, and as a result, EDTA simultaneously formed chemical bonds with PCBM and ZnO to serve as a chemical bridge connecting the two. DFT and chemical analyses revealed that EDTA can act as a chemical bridge between PCBM and ZnO, passivate defect sites, and improve charge transfer. Optoelectrical analysis proved that EDTA chemical bridge-mediated charge transfer (CBM-CT) provides more efficient interfacial charge transport by reducing trap-assisted recombination losses at ETL interfaces, thereby improving device performance. The PSC with EDTA chemical bridge-mediated heterojunction ETL exhibited a high PCE of 21.21%, almost no hysteresis, and excellent stability to both air and light.

SELECTION OF CITATIONS
SEARCH DETAIL
...