Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1789(5): 422-31, 2009 May.
Article in English | MEDLINE | ID: mdl-19414071

ABSTRACT

Histone deacetylase 5 (HDAC5) represses expression of nuclear genes that promote cardiac hypertrophy. Agonism of a variety of G protein coupled receptors (GPCRs) triggers phosphorylation-dependent nuclear export of HDAC5 via the CRM1 nuclear export receptor, resulting in derepression of pro-hypertrophic genes. A cell-based high-throughput screen of a commercial compound collection was employed to identify compounds with the ability to preserve the nuclear fraction of GFP-HDAC5 in primary cardiomyocytes exposed to GPCR agonists. A hit compound potently inhibited agonist-induced GFP-HDAC5 nuclear export in cultured neonatal rat ventricular myocytes (NRVMs). A small set of related compounds was designed and synthesized to evaluate structure-activity relationship (SAR). The results demonstrated that inhibition of HDAC5 nuclear export was a result of compounds irreversibly reacting with a key cysteine residue in CRM1 that is required for its function. CRM1 inhibition by the compounds also resulted in potent suppression of cardiomyocyte hypertrophy. These studies define a novel class of anti-hypertrophic compounds that function through irreversible inhibition of CRM1-dependent nuclear export.


Subject(s)
Cardiomegaly/drug therapy , Histone Deacetylases/metabolism , Karyopherins/antagonists & inhibitors , Myocytes, Cardiac/drug effects , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Active Transport, Cell Nucleus/drug effects , Amides/pharmacology , Aniline Compounds/pharmacology , Animals , Cardiomegaly/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cells, Cultured , Histone Deacetylase Inhibitors , Histone Deacetylases/chemistry , Humans , Karyopherins/metabolism , Microscopy, Fluorescence , Myocytes, Cardiac/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/metabolism , Structure-Activity Relationship , Exportin 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...