Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38722309

ABSTRACT

SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.


Subject(s)
B-Lymphocytes , CD4-Positive T-Lymphocytes , Qa-SNARE Proteins , Animals , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/metabolism , Mice, Knockout , Mice, Inbred C57BL , Female , Male , Germinal Center/immunology , Germinal Center/metabolism , Immunity, Humoral , Exocytosis
3.
Dev Comp Immunol ; 151: 105093, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37951324

ABSTRACT

The innate immune response relies on the ability of host cells to rapidly detect and respond to microbial nucleic acids. Toll-like receptors (TLRs), a class of pattern recognition receptors (PRRs), play a fundamental role in distinguishing self from non-self at the molecular level. In this study, we focused on TLR21, an avian TLR that recognizes DNA motifs commonly found in bacterial genomic DNA, specifically unmethylated CpG motifs. TLR21 is believed to act as a functional homologue to mammalian TLR9. By analysing TLR21 signalling in chickens, we sought to elucidate avian TLR21 activation outputs in parallel to that of other nucleic acid species. Our analyses revealed that chicken TLR21 (chTLR21) triggers the activation of NF-κB and induces a potent type-I interferon response in chicken macrophages, similar to the signalling cascades observed in mammalian TLR9 activation. Notably, the transcription of interferon beta (IFNB) by chTLR21 was found to be dependent on both NF-κB and IRF7 signalling, but independent of the TBK1 kinase, a distinctive feature of mammalian TLR9 signalling. These findings highlight the conservation of critical signalling components and downstream responses between avian TLR21 and mammalian TLR9, despite their divergent evolutionary origins. These insights into the evolutionarily conserved mechanisms of nucleic acid sensing contribute to the broader understanding of host-pathogen interactions across species.


Subject(s)
Interferon Type I , Nucleic Acids , Animals , Chickens , Toll-Like Receptor 9 , NF-kappa B , Oligodeoxyribonucleotides , Mammals
4.
J Cell Sci ; 136(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36546731

ABSTRACT

Contractile vacuoles (CVs), enigmatic osmoregulatory organelles, share common characteristics, such as a requirement for RAB11 and high levels of V-ATPase. These commonalities suggest a conserved evolutionary origin for the CVs with implications for understanding of the last common ancestor of eukaryotes and eukaryotic diversification more broadly. A taxonomically broader sampling of CV-associated machinery is required to address this question further. We used a transcriptomics-based approach to identify CV-associated gene products in Dictyostelium discoideum. This approach was first validated by assessing a set of known CV-associated gene products, which were significantly upregulated following hypo-osmotic exposure. Moreover, endosomal and vacuolar gene products were enriched in the upregulated gene set. An upregulated SNARE protein (NPSNB) was predominantly plasma membrane localised and enriched in the vicinity of CVs, supporting the association with this organelle found in the transcriptomic analysis. We therefore confirm that transcriptomic approaches can identify known and novel players in CV function, in our case emphasizing the role of endosomal vesicle fusion machinery in the D. discoideum CV and facilitating future work to address questions regarding the deep evolution of eukaryotic organelles.


Subject(s)
Dictyostelium , Vacuoles , Vacuoles/genetics , Vacuoles/metabolism , Dictyostelium/genetics , Dictyostelium/metabolism , Endosomes/genetics , Endosomes/metabolism , Biological Transport , Cell Membrane/metabolism
5.
Hum Mutat ; 43(12): 2265-2278, 2022 12.
Article in English | MEDLINE | ID: mdl-36153662

ABSTRACT

A rare and fatal disease resembling mucopolysaccharidosis in infants, is caused by impaired intracellular endocytic trafficking due to deficiency of core components of the intracellular membrane-tethering protein complexes, HOPS, and CORVET. Whole exome sequencing identified a novel VPS33A mutation in a patient suffering from a variant form of mucopolysaccharidosis. Electron and confocal microscopy, immunoblotting, and glycosphingolipid trafficking experiments were undertaken to investigate the effects of the mutant VPS33A in patient-derived skin fibroblasts. We describe an attenuated juvenile form of VPS33A-related syndrome-mucopolysaccharidosis plus in a man who is homozygous for a hitherto unknown missense mutation (NM_022916.4: c.599 G>C; NP_075067.2:p. Arg200Pro) in a conserved region of the VPS33A gene. Urinary glycosaminoglycan (GAG) analysis revealed increased heparan, dermatan sulphates, and hyaluronic acid. We showed decreased abundance of VPS33A in patient derived fibroblasts and provided evidence that the p.Arg200Pro mutation leads to destablization of the protein and proteasomal degradation. As in the infantile form of mucopolysaccharidosis plus, the endocytic compartment in the fibroblasts also expanded-a phenomenon accompanied by increased endolysosomal acidification and impaired intracellular glycosphingolipid trafficking. Experimental treatment of the patient's cultured fibroblasts with the proteasome inhibitor, bortezomib, or exposure to an inhibitor of glucosylceramide synthesis, eliglustat, improved glycosphingolipid trafficking. To our knowledge this is the first report of an attenuated juvenile form of VPS33A insufficiency characterized by appreciable residual endosomal-lysosomal trafficking and a milder mucopolysaccharidosis plus than the disease in infants. Our findings expand the proof of concept of redeploying clinically approved drugs for therapeutic exploitation in patients with juvenile as well as infantile forms of mucopolysaccharidosis plus disease.


Subject(s)
Mutation, Missense , Vesicular Transport Proteins , Humans , Male , Endosomes/metabolism , Lysosomes/metabolism , Mutation , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
6.
J Exp Med ; 219(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35819358

ABSTRACT

CD38 is a multifunctional protein expressed on the surface of B cells in healthy individuals but also in B cell malignancies. Previous studies have suggested a connection between CD38 and components of the IgM class B cell antigen receptor (IgM-BCR) and its coreceptor complex. Here, we provide evidence that CD38 is closely associated with CD19 in resting B cells and with the IgM-BCR upon engagement. We show that targeting CD38 with an antibody, or removing this molecule with CRISPR/Cas9, inhibits the association of CD19 with the IgM-BCR, impairing BCR signaling in normal and malignant B cells. Together, our data suggest that CD38 is a new member of the BCR coreceptor complex, where it exerts a modulatory effect on B cell activation upon antigen recognition by regulating CD19. Our study also reveals a new mechanism where α-CD38 antibodies could be a valuable option in therapeutic approaches to B cell malignancies driven by aberrant BCR signaling.


Subject(s)
ADP-ribosyl Cyclase 1/immunology , B-Lymphocytes , Membrane Glycoproteins/immunology , Receptors, Antigen, B-Cell , Adaptor Proteins, Signal Transducing/metabolism , Antigens, CD19/metabolism , Humans , Immunoglobulin M , Lymphocyte Activation , Receptors, Antigen, B-Cell/metabolism
8.
Traffic ; 20(12): 974-982, 2019 12.
Article in English | MEDLINE | ID: mdl-31503392

ABSTRACT

CHoP-In (CRISPR/Cas9-mediated Homology-independent PCR-product integration) is a fast, non-homologous end-joining based, strategy for genomic editing in mammalian cells. There is no requirement for cloning in generation of the integration donor, instead the desired integration donor is produced as a polymerase chain reaction (PCR) product, flanked by the Cas9 recognition sequences of the target locus. When co-transfected with the cognate Cas9 and guide RNA, double strand breaks are introduced at the target genomic locus and at both ends of the PCR product. This allows incorporation into the genomic locus via hon-homologous end joining. The approach is versatile, allowing N-terminal, C-terminal or internal tag integration and gives predictable genomic integrations, as demonstrated for a selection of well characterised membrane trafficking proteins. The lack of donor vectors offers advantages over existing methods in terms of both speed and hands-on time. As such this approach will be a useful addition to the genome editing toolkit of those working in mammalian cell systems.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , DNA Breaks, Double-Stranded , HeLa Cells , Humans , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
9.
Brain ; 141(5): 1286-1299, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29481671

ABSTRACT

Many genetic neurological disorders exhibit variable expression within affected families, often exemplified by variations in disease age at onset. Epistatic effects (i.e. effects of modifier genes on the disease gene) may underlie this variation, but the mechanistic basis for such epistatic interactions is rarely understood. Here we report a novel epistatic interaction between SPAST and the contiguous gene DPY30, which modifies age at onset in hereditary spastic paraplegia, a genetic axonopathy. We found that patients with hereditary spastic paraplegia caused by genomic deletions of SPAST that extended into DPY30 had a significantly younger age at onset. We show that, like spastin, the protein encoded by SPAST, the DPY30 protein controls endosomal tubule fission, traffic of mannose 6-phosphate receptors from endosomes to the Golgi, and lysosomal ultrastructural morphology. We propose that additive effects on this pathway explain the reduced age at onset of hereditary spastic paraplegia in patients who are haploinsufficient for both genes.


Subject(s)
Epistasis, Genetic/genetics , Mutation/genetics , Nuclear Proteins/genetics , Spastic Paraplegia, Hereditary/genetics , Spastin/genetics , Adult , Age of Onset , CD8 Antigens/genetics , CD8 Antigens/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells/metabolism , HeLa Cells/ultrastructure , Humans , Lysosomal-Associated Membrane Protein 1/metabolism , Lysosomal-Associated Membrane Protein 1/ultrastructure , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Nuclear Proteins/metabolism , Nuclear Proteins/ultrastructure , Protein Transport/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Nat Commun ; 9(1): 596, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426865

ABSTRACT

Vesicluar transport of proteins from endosomes to the trans-Golgi network (TGN) is an essential cellular pathway, but much of its machinery is still unknown. A screen for genes involved in endosome-to-TGN trafficking produced two hits, the adaptor protein-1 (AP-1 complex), which facilitates vesicle budding, and WDR11. Here we demonstrate that WDR11 forms a stable complex with two other proteins, which localises to the TGN region and does not appear to be associated with AP-1, suggesting it may act downstream from budding. In a vesicle tethering assay, capture of vesicles by golgin-245 was substantially reduced in WDR11-knockout cells. Moreover, structured illumination microscopy and relocation assays indicate that the WDR11 complex is initially recruited onto vesicles rather than the TGN, where it may in turn recruit the golgin binding partner TBC1D23. We propose that the complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles that were generated using AP-1.


Subject(s)
Adaptor Protein Complex 1/metabolism , Cytoplasmic Vesicles/metabolism , Membrane Proteins/metabolism , Multiprotein Complexes/metabolism , Proto-Oncogene Proteins/metabolism , Autoantigens/metabolism , CRISPR-Cas Systems , Endosomes/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/genetics , Microscopy, Fluorescence , Protein Binding , Protein Transport , Proto-Oncogene Proteins/genetics , RNA Interference , trans-Golgi Network/metabolism
11.
Mol Biol Cell ; 28(20): 2676-2685, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28814506

ABSTRACT

The dense core vesicles (DCVs) of neuroendocrine cells are a rich source of bioactive molecules such as peptides, hormones, and neurotransmitters, but relatively little is known about how they are formed. Using fractionation profiling, a method that combines subcellular fractionation with mass spectrometry, we identified ∼1200 proteins in PC12 cell vesicle-enriched fractions, with DCV-associated proteins showing distinct profiles from proteins associated with other types of vesicles. To investigate the role of clathrin in DCV biogenesis, we stably transduced PC12 cells with an inducible short hairpin RNA targeting clathrin heavy chain, resulting in ∼85% protein loss. DCVs could still be observed in the cells by electron microscopy, but mature profiles were approximately fourfold less abundant than in mock-treated cells. By quantitative mass spectrometry, DCV-associated proteins were found to be reduced approximately twofold in clathrin-depleted cells as a whole and approximately fivefold in vesicle-enriched fractions. Our combined data sets enabled us to identify new candidate DCV components. Secretion assays revealed that clathrin depletion causes a near-complete block in secretagogue-induced exocytosis. Taken together, our data indicate that clathrin has a function in DCV biogenesis beyond its established role in removing unwanted proteins from the immature vesicle.


Subject(s)
Clathrin/metabolism , Secretory Vesicles/metabolism , Animals , Calcium-Binding Proteins/metabolism , Cells, Cultured , Clathrin Heavy Chains/metabolism , Exocytosis/physiology , Mass Spectrometry/methods , Neuroendocrine Cells/metabolism , PC12 Cells , Rats , Subcellular Fractions
12.
J Cell Sci ; 130(8): 1379-1392, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28232524

ABSTRACT

Clathrin-mediated endocytosis (CME) is the most evolutionarily ancient endocytic mechanism known, and in many lineages the sole mechanism for internalisation. Significantly, in mammalian cells CME is responsible for the vast bulk of endocytic flux and has likely undergone multiple adaptations to accommodate specific requirements by individual species. In African trypanosomes, we previously demonstrated that CME is independent of the AP-2 adaptor protein complex, that orthologues to many of the animal and fungal CME protein cohort are absent, and that a novel, trypanosome-restricted protein cohort interacts with clathrin and drives CME. Here, we used a novel cryomilling affinity isolation strategy to preserve transient low-affinity interactions, giving the most comprehensive trypanosome clathrin interactome to date. We identified the trypanosome AP-1 complex, Trypanosoma brucei (Tb)EpsinR, several endosomal SNAREs plus orthologues of SMAP and the AP-2 associated kinase AAK1 as interacting with clathrin. Novel lineage-specific proteins were identified, which we designate TbCAP80 and TbCAP141. Their depletion produced extensive defects in endocytosis and endomembrane system organisation, revealing a novel molecular pathway subtending an early-branching and highly divergent form of CME, which is conserved and likely functionally important across the kinetoplastid parasites.


Subject(s)
Endocytosis , Trypanosoma brucei brucei , Trypanosomiasis/metabolism , Adaptor Protein Complex 2/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Biological Evolution , Clathrin/metabolism , Cytoskeletal Proteins/metabolism , Humans , Phylogeny , Protein Serine-Threonine Kinases/metabolism , Protozoan Proteins/metabolism , SNARE Proteins/metabolism , Transcription Factor AP-1/metabolism
13.
PLoS Pathog ; 13(1): e1006063, 2017 01.
Article in English | MEDLINE | ID: mdl-28114397

ABSTRACT

Membrane transport is an essential component of pathogenesis for most infectious organisms. In African trypanosomes, transport to and from the plasma membrane is closely coupled to immune evasion and antigenic variation. In mammals and fungi an octameric exocyst complex mediates late steps in exocytosis, but comparative genomics suggested that trypanosomes retain only six canonical subunits, implying mechanistic divergence. We directly determined the composition of the Trypanosoma brucei exocyst by affinity isolation and demonstrate that the parasite complex is nonameric, retaining all eight canonical subunits (albeit highly divergent at the sequence level) plus a novel essential subunit, Exo99. Exo99 and Sec15 knockdowns have remarkably similar phenotypes in terms of viability and impact on morphology and trafficking pathways. Significantly, both Sec15 and Exo99 have a clear function in endocytosis, and global proteomic analysis indicates an important role in maintaining the surface proteome. Taken together these data indicate additional exocyst functions in trypanosomes, which likely include endocytosis, recycling and control of surface composition. Knockdowns in HeLa cells suggest that the role in endocytosis is shared with metazoan cells. We conclude that, whilst the trypanosome exocyst has novel components, overall functionality appears conserved, and suggest that the unique subunit may provide therapeutic opportunities.


Subject(s)
Endocytosis/physiology , Trypanosoma brucei brucei/pathogenicity , Biological Evolution , Blotting, Western , Cell Membrane/metabolism , HeLa Cells , Humans , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Polymerase Chain Reaction , Protein Transport/physiology , Proteomics , Protozoan Proteins/metabolism
14.
BMC Biol ; 14(1): 109, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27927196

ABSTRACT

BACKGROUND: Mutations in Lipopolysaccharide-induced tumour necrosis factor-α factor (LITAF) cause the autosomal dominant inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). LITAF encodes a 17 kDa protein containing an N-terminal proline-rich region followed by an evolutionarily-conserved C-terminal 'LITAF domain', which contains all reported CMT1C-associated pathogenic mutations. RESULTS: Here, we report the first structural characterisation of LITAF using biochemical, cell biological, biophysical and NMR spectroscopic approaches. Our structural model demonstrates that LITAF is a monotopic zinc-binding membrane protein that embeds into intracellular membranes via a predicted hydrophobic, in-plane, helical anchor located within the LITAF domain. We show that specific residues within the LITAF domain interact with phosphoethanolamine (PE) head groups, and that the introduction of the V144M CMT1C-associated pathogenic mutation leads to protein aggregation in the presence of PE. CONCLUSIONS: In addition to the structural characterisation of LITAF, these data lead us to propose that an aberrant LITAF-PE interaction on the surface of intracellular membranes contributes to the molecular pathogenesis that underlies this currently incurable disease.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Ethanolamines/chemistry , Mutation , Nuclear Proteins/genetics , Transcription Factors/genetics , Amino Acid Sequence , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line , Charcot-Marie-Tooth Disease/diagnosis , HeLa Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Nuclear Proteins/chemistry , Protein Aggregation, Pathological , Protein Conformation , Transcription Factors/chemistry
15.
Elife ; 52016 Sep 22.
Article in English | MEDLINE | ID: mdl-27657169

ABSTRACT

Exosomes are extracellular vesicles that are released when endosomes fuse with the plasma membrane. They have been implicated in various functions in both health and disease, including intercellular communication, antigen presentation, prion transmission, and tumour cell metastasis. Here we show that inactivating the vacuolar ATPase in HeLa cells causes a dramatic increase in the production of exosomes, which display endocytosed tracers, cholesterol, and CD63. The exosomes remain clustered on the cell surface, similar to retroviruses, which are attached to the plasma membrane by tetherin. To determine whether tetherin also attaches exosomes, we knocked it out and found a 4-fold reduction in plasma membrane-associated exosomes, with a concomitant increase in exosomes discharged into the medium. This phenotype could be rescued by wild-type tetherin but not tetherin lacking its GPI anchor. We propose that tetherin may play a key role in exosome fate, determining whether they participate in long-range or short-range interactions.

17.
PLoS Pathog ; 11(10): e1005174, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26451915

ABSTRACT

Autophagy plays a key role during Salmonella infection, by eliminating these pathogens following escape into the cytosol. In this process, selective autophagy receptors, including the myosin VI adaptor proteins optineurin and NDP52, have been shown to recognize cytosolic pathogens. Here, we demonstrate that myosin VI and TAX1BP1 are recruited to ubiquitylated Salmonella and play a key role in xenophagy. The absence of TAX1BP1 causes an accumulation of ubiquitin-positive Salmonella, whereas loss of myosin VI leads to an increase in ubiquitylated and LC3-positive bacteria. Our structural studies demonstrate that the ubiquitin-binding site of TAX1BP1 overlaps with the myosin VI binding site and point mutations in the TAX1BP1 zinc finger domains that affect ubiquitin binding also ablate binding to myosin VI. This mutually exclusive binding and the association of TAX1BP1 with LC3 on the outer limiting membrane of autophagosomes may suggest a molecular mechanism for recruitment of this motor to autophagosomes. The predominant role of TAX1BP1, a paralogue of NDP52, in xenophagy is supported by our evolutionary analysis, which demonstrates that functionally intact NDP52 is missing in Xenopus and mice, whereas TAX1BP1 is expressed in all vertebrates analysed. In summary, this work highlights the importance of TAX1BP1 as a novel autophagy receptor in myosin VI-mediated xenophagy. Our study identifies essential new machinery for the autophagy-dependent clearance of Salmonella typhimurium and suggests modulation of myosin VI motor activity as a potential therapeutic target in cellular immunity.


Subject(s)
Autophagy/immunology , Intracellular Signaling Peptides and Proteins/immunology , Myosin Heavy Chains/immunology , Neoplasm Proteins/immunology , Salmonella Infections/immunology , Salmonella typhimurium , Animals , Blotting, Western , Cells, Cultured , Gene Knockdown Techniques , HeLa Cells , Humans , Immunoprecipitation , Intracellular Signaling Peptides and Proteins/metabolism , Magnetic Resonance Spectroscopy , Mice , Microscopy, Fluorescence , Molecular Sequence Data , Myosin Heavy Chains/metabolism , Neoplasm Proteins/metabolism , Phylogeny , Protein Conformation , Salmonella Infections/metabolism , Salmonella typhimurium/immunology , Salmonella typhimurium/metabolism , Ubiquitination
18.
J Cell Sci ; 128(11): 2130-42, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25908855

ABSTRACT

Clathrin-mediated endocytosis (CME) is a major route of entry into eukaryotic cells. A core of evolutionarily ancient genes encodes many components of this system but much of our mechanistic understanding of CME is derived from a phylogenetically narrow sampling of a few model organisms. In the parasite Trypanosoma brucei, which is distantly related to the better characterised animals and fungi, exceptionally fast endocytic turnover aids its evasion of the host immune system. Although clathrin is absolutely essential for this process, the adaptor protein complex 2 (AP2) has been secondarily lost, suggesting mechanistic divergence. Here, we characterise two phosphoinositide-binding monomeric clathrin adaptors, T. brucei (Tb)EpsinR and TbCALM, which in trypanosomes are represented by single genes, unlike the expansions present in animals and fungi. Depletion of these gene products reveals essential, but partially redundant, activities in CME. Ultrastructural analysis of TbCALM and TbEpsinR double-knockdown cells demonstrated severe defects to clathrin-coated pit formation and morphology associated with a dramatic inhibition of endocytosis. Depletion of TbCALM alone, however, produced a distinct lysosomal segregation phenotype, indicating an additional non-redundant role for this protein. Therefore, TbEpsinR and TbCALM represent ancient phosphoinositide-binding proteins with distinct and vital roles in AP2-independent endocytosis.


Subject(s)
Adaptor Protein Complex 2/metabolism , Clathrin/metabolism , Endocytosis/physiology , Protein Structure, Tertiary/physiology , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Carrier Proteins/metabolism , Cells, Cultured , Coated Pits, Cell-Membrane/metabolism , Evolution, Molecular , Phosphatidylinositols/metabolism , Phylogeny , Trypanosoma brucei brucei/metabolism
19.
Biochem J ; 466(3): 537-46, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25562606

ABSTRACT

Reactive oxygen species (ROS) can cause pancreatic ß-cell death by activating transient receptor potential (melastatin) 2 (TRPM2) channels. Cell death has been attributed to the ability of these channels to raise cytosolic Ca2+. Recent studies however revealed that TRPM2 channels can also conduct Zn2+, but the physiological relevance of this property is enigmatic. Given that Zn2+ is cytotoxic, we asked whether TRPM2 channels can permeate sufficient Zn2+ to affect cell viability. To address this, we used the insulin secreting (INS1) ß-cell line, human embryonic kidney (HEK)-293 cells transfected with TRPM2 and pancreatic islets. H2O2 activation of TRPM2 channels increases the cytosolic levels of both Ca2+ and Zn2+ and causes apoptotic cell death. Interestingly, chelation of Zn2+ alone was sufficient to prevent ß-cell death. The source of the cytotoxic Zn2+ is intracellular, found largely sequestered in lysosomes. Lysosomes express TRPM2 channels, providing a potential route for Zn2+ release. Zn2+ release is potentiated by extracellular Ca2+ entry, indicating that Ca2+-induced Zn2+ release leads to apoptosis. Knockout of TRPM2 channels protects mice from ß-cell death and hyperglycaemia induced by multiple low-dose streptozotocin (STZ; MLDS) administration. These results argue that TRPM2-mediated, Ca2+-potentiated Zn2+ release underlies ROS-induced ß-cell death and Zn2+, rather than Ca2+, plays a primary role in apoptosis.


Subject(s)
Insulin-Secreting Cells/metabolism , Intracellular Fluid/metabolism , TRPM Cation Channels/physiology , Zinc/metabolism , Animals , Cell Death/physiology , HEK293 Cells , Humans , Insulin-Secreting Cells/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/metabolism
20.
Commun Integr Biol ; 8(6): e1082691, 2015.
Article in English | MEDLINE | ID: mdl-27064836

ABSTRACT

In the kinetoplastid parasite Trypanosoma brucei clathrin-mediated endocytosis is essential for survival and aids immune evasion in the mammalian host. The formation of endocytic clathrin coated vesicles in T. brucei is via a unique mechanism owing to an evolutionarily recent loss of the adaptor protein (AP)2 complex, a central hub in endocytic vesicle assembly. Despite this loss, recent studies examining endocytic clathrin coat assembly have highlighted a high degree of conservation between trypanosomes and their mammalian hosts. In particular phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and its putative effectors, TbCALM and TbEpsinR, are central to clathrin-mediated endocytosis in the trypanosome, just as they are in animal cells. In addition to providing insights into the cell biology of T. brucei, these studies also suggest an ancient, possibly pan-eukaryotic connection between PtdIns(4,5)P2 and endocytosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...