Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(6): 6128-6146, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371841

ABSTRACT

Generation of hydrogen is one of the most promising routes to harvest solar energy for its sustainable utilization. Among different routes, the photoelectrochemical (PEC) process to split water using solar light to produce hydrogen is the green method to generate hydrogen. The sluggish kinetics through complicated pathways makes the oxygen evolution reaction the rate limiting step of the overall water splitting process. Therefore, development of an efficient photoanode for the sustainable oxidation of water is most challenging in an efficient overall PEC water splitting process. The low solar to hydrogen conversion efficiency arises from the slow surface kinetics, poor hole diffusion, and fast charge recombination processes. There have been strategies to improve catalytic performances through the removal of such detrimental effects. The generation of engineered surfaces is one of the important strategies recently adopted for the enhancement of the catalytic efficiencies. The present review has been focused on the discussion of engineered surfaces using crystal facet engineering, protective surface layer, passivation using the atomic layer deposition (ALD) technique, and cocatalyst modified surfaces to enhance the catalytic efficiency. Some of the important parameters defining catalyst performance are also discussed at the beginning of the review.

2.
ACS Omega ; 8(37): 33452-33465, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744824

ABSTRACT

Bismuth vanadate (BiVO4) has been one of the most promising photoanodes for the photoelectrochemical (PEC) water oxidation process. Efforts are still on to overcome the drawbacks of this photoanode to enhance the catalytic efficiency and improve the stability. In the present work, three-dimensional graphene (3D-G) was incorporated inside the BiVO4 matrix, primarily to improve the conductivity of the material. The photoanodes are fabricated with the incorporation of a SnO2 heterojunction and application of cobalt borate (Co-Bi) as a cocatalyst. The incorporation of 3D-G has enhanced the photocurrent from 0.72 o 1.21 mA cm-2 in ITO/SnO2/BiVO4 and ITO/SnO2/3D-G-BiVO4 materials; the photocurrent has been improved from 0.89 to 1.52 mA cm-2 in ITO/SnO2/BiVO4/Co-Bi and ITO/SnO2/3D-G-BiVO4. Semiconductor properties are evaluated from the Mott-Schottky measurements, and the charge transfer and transport kinetics of the PEC process are measured from several photoelectrochemical investigations. Both the charge transport and the charge transfer efficiencies are enhanced upon inclusion of 3D-G into the catalyst system. The lifetime of the charge carrier is observed to be increased. The decrease in the decay kinetics of the holes, enhancement in the open-circuit photovoltage (OCPV), and the resulting modulation of the surface states are responsible for the enhancement in the surface charge transfer process due to the inclusion of 3D-G into the catalytic system. Therefore, the additional role of 3D-G in the modulation of the surface states and release of the Fermi level pinning has made the band alignment between the semiconductor and the analyte better, which resulted in enhanced catalytic performance in the photoelectrochemical oxidation of water.

3.
Chem Commun (Camb) ; 57(68): 8488-8491, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34350921

ABSTRACT

The ability of polyanionic molybdate to inhibit and degrade protein fibrils both in vitro (insulin protein) and in vivo (Drosophila fly model) has been demonstrated. We establish the disappearance of fibrillar structures and recovery from neurodegenerative disorders in molybdate-treated Aß42-mutant Drosophila flies as compared to the untreated ones, corroborating the therapeutic ability of ammonium molybdate towards the treatment of Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/genetics , Amyloid/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster , Molybdenum/pharmacology , Neurodegenerative Diseases/pathology , Amyloid beta-Peptides/metabolism , Animals , Drosophila Proteins/genetics , Drug Delivery Systems , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Peptide Fragments/metabolism
4.
Article in English | MEDLINE | ID: mdl-34986753

ABSTRACT

Investigation of electrochemical and spectroscopic characteristics of anti-human immunodeficiency virus (HIV) drug provides important information related to the efficacy of the drug in relation with its interaction with several important biomolecules. In the present investigation we have developed an electrochemical and spectroscopic method for the detection of anti-HIV drug Darunavir (DRV) using the carbon paste as the working electrode. The analytical method has generated the detection limit of 1.86 µM (S/N = 3). The electrochemical investigations have also been carried out for the exploration of the interaction of DRV with double stranded deoxyribose nucleic acid DNA (dsDNA) and human serum albumin (HSA). Electrochemical investigations were supported from the spectroscopic measurements in evaluating the interaction. The results obtained from voltammetric and spectroscopic experiments shows strong interaction between the drug and the macromolecules. It has been observed that DRV forms strong complexes with HSA and dsDNA with the formation constants of 2.7 × 104 and 4.2 × 104 M-1 respectively. The formation constants are varied with the pH of the solution, which leads to the assertion of the mechanism of the interaction between DRV and dsDNA.


Subject(s)
Anti-HIV Agents/chemistry , Darunavir/chemistry , Serum Albumin, Human/chemistry , DNA , Electrodes , HIV Infections/drug therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...