Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(35): 23281-8, 2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27529116

ABSTRACT

We demonstrate for the first time the tuning of qubit emission based on cavity engineering on plasmonic silver thin films. This tunable transition from weak to strong coupling regime in plasmon-coupled fluorescence platform was achieved with the use of palladium nanocomposites. In addition to our recently established correlation between Purcell factor and surface plasmon-coupled emission enhancements, we now show that the qubit-cavity environment experiences the Purcell effect, Casimir force, internal fano resonance, and Rabi splitting. Finite-difference time-domain simulations and time correlated single photon counting studies helped probe the molecular structure of the radiating dipole, rhodamine-6G, in palladium-based nanocavities. The sensitivity of the qubit-cavity mode helped attain a DNA detection limit of 1 aM (attomolar) and multianalyte sensing at picomolar concentration with the use of a smartphone camera and CIE color space. We believe that this low-cost technology will lay the groundwork for mobile phone-based next-gen plasmonic sensing devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...