Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Biomedicines ; 11(6)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37371741

ABSTRACT

Pick's disease (PiD) is a devastating neurodegenerative disease that is characterized by dementia, frontotemporal lobar degeneration, and the aggregation of 3R tau in pathognomonic inclusions known as Pick bodies. The term PiD has adopted many meanings since its conception in 1926, but it is currently used as a strictly neuropathological term, since PiD patients cannot be diagnosed during life. Due to its rarity, PiD remains significantly understudied, and subsequently, the etiology and pathomechanisms of the disease remain to be elucidated. The study of PiD and the preferential 3R tau accumulation that is unique to PiD is imperative in order to expand the current understanding of the disease and inform future studies and therapeutic development, since the lack of intervention strategies for tauopathies remains an unmet need. Yet, the lack of an antemortem diagnostic test for the disease has further complicated the study of PiD. The development of a clinical diagnostic assay for PiD will be a vital step in the study of the disease that will greatly contribute to therapeutic research, clinical trial design and patient recruitment and ultimately improve patient outcomes. Seed aggregation assays have shown great promise for becoming ante mortem clinical diagnostic tools for many proteinopathies, including tauopathies. Future research on adapting and optimizing current seed aggregation assays to successfully detect 3R tau pathogenic forms from PiD samples will be critical in establishing a 3R tau specific seed aggregation assay that can be used for clinical diagnosis and treatment evaluation.

2.
Front Aging Neurosci ; 13: 661505, 2021.
Article in English | MEDLINE | ID: mdl-34276337

ABSTRACT

A classical hallmark of Parkinson's disease (PD) pathogenesis is the accumulation of misfolded alpha-synuclein (αSyn) within Lewy bodies and Lewy neurites, although its role in microglial dysfunction and resultant dopaminergic (DAergic) neurotoxicity is still elusive. Previously, we identified that protein kinase C delta (PKCδ) is activated in post mortem PD brains and experimental Parkinsonism and that it participates in reactive microgliosis; however, the relationship between PKCδ activation, endoplasmic reticulum stress (ERS) and the reactive microglial activation state in the context of α-synucleinopathy is largely unknown. Herein, we show that oxidative stress, mitochondrial dysfunction, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, and PKCδ activation increased concomitantly with ERS markers, including the activating transcription factor 4 (ATF-4), serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1α (p-IRE1α), p-eukaryotic initiation factor 2 (eIF2α) as well as increased generation of neurotoxic cytokines, including IL-1ß in aggregated αSynagg-stimulated primary microglia. Importantly, in mouse primary microglia-treated with αSynagg we observed increased expression of Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of the thioredoxin (Trx) pathway, a major antioxidant protein system. Additionally, αSynagg promoted interaction between NLRP3 and TXNIP in these cells. In vitro knockdown of PKCδ using siRNA reduced ERS and led to reduced expression of TXNIP and the NLRP3 activation response in αSynagg-stimulated mouse microglial cells (MMCs). Additionally, attenuation of mitochondrial reactive oxygen species (mitoROS) via mito-apocynin and amelioration of ERS via the eIF2α inhibitor salubrinal (SAL) reduced the induction of the ERS/TXNIP/NLRP3 signaling axis, suggesting that mitochondrial dysfunction and ERS may act in concert to promote the αSynagg-induced microglial activation response. Likewise, knockdown of TXNIP by siRNA attenuated the αSynagg-induced NLRP3 inflammasome activation response. Finally, unilateral injection of αSyn preformed fibrils (αSynPFF) into the striatum of wild-type mice induced a significant increase in the expression of nigral p-PKCδ, ERS markers, and upregulation of the TXNIP/NLRP3 inflammasome signaling axis prior to delayed loss of TH+ neurons. Together, our results suggest that inhibition of ERS and its downstream signaling mediators TXNIP and NLRP3 might represent novel therapeutic avenues for ameliorating microglia-mediated neuroinflammation in PD and other synucleinopathies.

3.
Cell Rep ; 34(11): 108843, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730588

ABSTRACT

Tau accumulation is a major pathological hallmark of Alzheimer's disease (AD) and other tauopathies, but the mechanism(s) of tau aggregation remains unclear. Taking advantage of the identification of tau filament cores by cryoelectron microscopy, we demonstrate that the AD tau core possesses the intrinsic ability to spontaneously aggregate in the absence of an inducer, with antibodies generated against AD tau core filaments detecting AD tau pathology. The AD tau core also drives aggregation of full-length wild-type tau, increases seeding potential, and templates abnormal forms of tau present in brain homogenates and antemortem cerebrospinal fluid (CSF) from patients with AD in an ultrasensitive real-time quaking-induced conversion (QuIC) assay. Finally, we show that the filament cores in corticobasal degeneration (CBD) and Pick's disease (PiD) similarly assemble into filaments under physiological conditions. These results document an approach to modeling tau aggregation and have significant implications for in vivo investigation of tau transmission and biomarker development.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , tau Proteins/metabolism , Antibodies/metabolism , Brain/metabolism , Brain/pathology , Corticobasal Degeneration/pathology , Humans , Pick Disease of the Brain/pathology , Protein Aggregates , Time Factors , tau Proteins/cerebrospinal fluid , tau Proteins/ultrastructure
4.
Mov Disord ; 35(12): 2230-2239, 2020 12.
Article in English | MEDLINE | ID: mdl-32960470

ABSTRACT

BACKGROUND: An unmet clinical need in Parkinson's disease (PD) is to identify biomarkers for diagnosis, preferably in peripherally accessible tissues such as skin. Immunohistochemical studies have detected pathological α-synuclein (αSyn) in skin biopsies from PD patients albeit sensitivity needs to be improved. OBJECTIVE: Our study provides the ultrasensitive detection of pathological αSyn present in the skin of PD patients, and thus, pathological αSyn in skin could be a potential biomarker for PD. METHODS: The real-time quaking-induced conversion assay was used to detect pathological αSyn present in human skin tissues. Further, we optimized this ultra-sensitive and specific assay for both frozen and formalin-fixed paraffin-embedded sections of skin tissues. We determined the seeding kinetics of the αSyn present in the skin from autopsied subjects consisting of frozen skin tissues from 25 PD and 25 controls and formalin-fixed paraffin-embedded skin sections from 12 PD and 12 controls. RESULTS: In a blinded study of skin tissues from autopsied subjects, we correctly identified 24/25 PD and 24/25 controls using frozen skin tissues (96% sensitivity and 96% specificity) compared to 9/12 PD and 10/12 controls using formalin-fixed paraffin-embedded skin sections (75% sensitivity and 83% specificity). CONCLUSIONS: Our blinded study results clearly demonstrate the feasibility of using skin tissues for clinical diagnosis of PD by detecting pathological αSyn. Moreover, this peripheral biomarker discovery study may have broader translational value in detecting misfolded proteins in skin samples as a longitudinal progression marker. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Lewy Body Disease , Parkinson Disease , Autopsy , Biomarkers , Humans , alpha-Synuclein
5.
J Clin Invest ; 130(8): 4195-4212, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32597830

ABSTRACT

Characterization of the key cellular targets contributing to sustained microglial activation in neurodegenerative diseases, including Parkinson's disease (PD), and optimal modulation of these targets can provide potential treatments to halt disease progression. Here, we demonstrated that microglial Kv1.3, a voltage-gated potassium channel, was transcriptionally upregulated in response to aggregated α-synuclein (αSynAgg) stimulation in primary microglial cultures and animal models of PD, as well as in postmortem human PD brains. Patch-clamp electrophysiological studies confirmed that the observed Kv1.3 upregulation translated to increased Kv1.3 channel activity. The kinase Fyn, a risk factor for PD, modulated transcriptional upregulation and posttranslational modification of microglial Kv1.3. Multiple state-of-the-art analyses, including Duolink proximity ligation assay imaging, revealed that Fyn directly bound to Kv1.3 and posttranslationally modified its channel activity. Furthermore, we demonstrated the functional relevance of Kv1.3 in augmenting the neuroinflammatory response by using Kv1.3-KO primary microglia and the Kv1.3-specific small-molecule inhibitor PAP-1, thus highlighting the importance of Kv1.3 in neuroinflammation. Administration of PAP-1 significantly inhibited neurodegeneration and neuroinflammation in multiple animal models of PD. Collectively, our results imply that Fyn-dependent regulation of Kv1.3 channels plays an obligatory role in accentuating the neuroinflammatory response in PD and identify Kv1.3 as a potential therapeutic target for PD.


Subject(s)
Kv1.3 Potassium Channel/metabolism , Microglia/metabolism , Parkinson Disease/metabolism , Protein Processing, Post-Translational , Animals , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Kv1.3 Potassium Channel/antagonists & inhibitors , Kv1.3 Potassium Channel/genetics , Mice , Mice, Knockout , Microglia/pathology , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/pathology , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
6.
Sci Rep ; 10(1): 7640, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376941

ABSTRACT

Chronic wasting disease (CWD) is a rapidly spreading prion disease of cervids, yet antemortem diagnosis, treatment, and control remain elusive. We recently developed an organotypic slice culture assay for sensitive detection of scrapie prions using ultrasensitive prion seeding. However, this model was not established for CWD prions due to their strong transmission barrier from deer (Odocoileus spp) to standard laboratory mice (Mus musculus). Therefore, we developed and characterized the ex vivo brain slice culture model for CWD, using a transgenic mouse model (Tg12) that expresses the elk (Cervus canadensis) prion protein gene (PRNP). We tested for CWD infectivity in cultured slices using sensitive seeding assays such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). Slice cultures from Tg12, but not from prnp-/- mice, tested positive for CWD. Slice-generated CWD prions transmitted efficiently to Tg12 mice. Furthermore, we determined the activity of anti-prion compounds and optimized a screening protocol for the infectivity of biological samples in this CWD slice culture model. Our results demonstrate that this integrated brain slice model of CWD enables the study of pathogenic mechanisms with translational implications for controlling CWD.


Subject(s)
Brain/metabolism , Brain/pathology , Wasting Disease, Chronic/etiology , Wasting Disease, Chronic/pathology , Animals , Biopsy , Disease Management , Disease Models, Animal , Disease Susceptibility , Immunohistochemistry , Mice , Mice, Knockout , Tissue Culture Techniques , Wasting Disease, Chronic/therapy
7.
Mov Disord ; 35(2): 268-278, 2020 02.
Article in English | MEDLINE | ID: mdl-31758740

ABSTRACT

BACKGROUND: Identification of a peripheral biomarker is a major roadblock in the diagnosis of PD. Immunohistological identification of p-serine 129 α-synuclein in the submandibular gland tissues of PD patients has been recently reported. OBJECTIVE: We report on a proof-of-principle study for using an ultra-sensitive and specific, real-time quaking-induced conversion assay to detect pathological α-synuclein in the submandibular gland tissues of PD patients. METHODS: The α-synuclein real-time quaking-induced conversion assay was used to detect and quantify pathological α-synuclein levels in PD, incidental Lewy body disease, and control submandibular gland tissues as well as in formalin-fixed paraffin-embedded sections. RESULTS: We determined the quantitative seeding kinetics of pathological α-synuclein present in submandibular gland tissues from autopsied subjects using the α-synuclein real-time quaking-induced conversion assay. A total of 32 cases comprising 13 PD, 3 incidental Lewy body disease, and 16 controls showed 100% sensitivity and 94% specificity. Interestingly, both PD and incidental Lewy body disease tissues showed 100% concordance for elevated levels of pathological α-synuclein seeding activity compared to control tissues. End-point dilution kinetic analyses revealed that the submandibular gland had a wide dynamic range of pathological α-synuclein seeding activity. CONCLUSIONS: Our results are the first to demonstrate the utility of using the real-time quaking-induced conversion assay on peripherally accessible submandibular gland tissues and formalin-fixed paraffin-embedded tissue sections to detect PD-related pathological changes with high sensitivity and specificity. Additionally, the detection of seeding activity from incidental Lewy body disease cases containing immunohistochemically undetected pathological α-synuclein demonstrates the α-synuclein real-time quaking-induced conversion assay's potential utility for identifying prodromal PD in submandibular gland tissues. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease/pathology , Parkinsonian Disorders/pathology , Submandibular Gland/pathology , alpha-Synuclein/analysis , Aged , Autopsy/methods , Biomarkers/analysis , Female , Humans , Lewy Body Disease/pathology , Male , Middle Aged , Parkinson Disease/metabolism , Parkinsonian Disorders/metabolism
8.
Sci Signal ; 12(572)2019 03 12.
Article in English | MEDLINE | ID: mdl-30862700

ABSTRACT

The aggregation of α-synuclein (αSyn) is considered a key pathophysiological feature of certain neurodegenerative disorders, collectively termed synucleinopathies. Given that a prion-like, cell-to-cell transfer of misfolded αSyn has been recognized in the spreading of αSyn pathology in synucleinopathies, we investigated the biological mechanisms underlying the propagation of the disease with respect to environmental neurotoxic stress. Considering the potential role of the divalent metal manganese (Mn2+) in protein aggregation, we characterized its effect on αSyn misfolding and transmission in experimental models of Parkinson's disease. In cultured dopaminergic neuronal cells stably expressing wild-type human αSyn, misfolded αSyn was secreted through exosomes into the extracellular medium upon Mn2+ exposure. These exosomes were endocytosed through caveolae into primary microglial cells, thereby mounting neuroinflammatory responses. Furthermore, Mn2+-elicited exosomes exerted a neurotoxic effect in a human dopaminergic neuronal model (LUHMES cells). Moreover, bimolecular fluorescence complementation (BiFC) analysis revealed that Mn2+ accelerated the cell-to-cell transmission of αSyn, resulting in dopaminergic neurotoxicity in a mouse model of Mn2+ exposure. Welders exposed to Mn2+ had increased misfolded αSyn content in their serum exosomes. Stereotaxically delivering αSyn-containing exosomes, isolated from Mn2+-treated αSyn-expressing cells, into the striatum initiated Parkinsonian-like pathological features in mice. Together, these results indicate that Mn2+ exposure promotes αSyn secretion in exosomal vesicles, which subsequently evokes proinflammatory and neurodegenerative responses in both cell culture and animal models.


Subject(s)
Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Exosomes/metabolism , Manganese/toxicity , Parkinson Disease, Secondary/metabolism , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , Animals , Cell Line , Disease Models, Animal , Dopaminergic Neurons/pathology , Exosomes/pathology , Manganese/pharmacology , Mice , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/pathology , Prions/metabolism , Protein Aggregation, Pathological/chemically induced , Protein Aggregation, Pathological/pathology
9.
J Neuroimmune Pharmacol ; 14(3): 423-435, 2019 09.
Article in English | MEDLINE | ID: mdl-30706414

ABSTRACT

Adult-onset neurodegenerative disorders, like Parkinson's disease (PD) and dementia with Lewy bodies (DLB), that share the accumulation of aggregated α-synuclein (αSynagg) as their hallmark molecular pathology are collectively known as α-synucleinopathies. Diagnosing α-synucleinopathies requires the post-mortem detection of αSynagg in various brain regions. Recent efforts to measure αSynagg in living patients include quantifying αSynagg in different biofluids as a biomarker for PD. We adopted the real-time quaking-induced conversion (RT-QuIC) assay to detect very low levels of αSynagg. We first optimized RT-QuIC for sensitivity, specificity, and reproducibility by using monomeric recombinant human wild-type αSyn as a substrate and αSynagg as the seed. Next, we exposed mouse microglia to αSyn pre-formed fibrils (αSynPFF) for 24 h. RT-QuIC assay revealed that the αSynPFF is taken up rapidly by mouse microglia, within 30 min, and cleared within 24 h. We then evaluated the αSyn RT-QuIC assay for detecting αSynagg in human PD, DLB, and Alzheimer's disease (AD) post-mortem brain homogenates (BH) along with PD and progressive supranuclear palsy (PSP) cerebrospinal fluid (CSF) samples and then determined protein aggregation rate (PAR) for αSynagg. The PD and DLB BH samples not only showed significantly higher αSynagg PAR compared to age-matched healthy controls and AD, but RT-QuIC was also highly reproducible with 94% sensitivity and 100% specificity. Similarly, PD CSF samples demonstrated significantly higher αSynagg PAR compared to age-matched healthy controls, with 100% sensitivity and specificity. Overall, the RT-QuIC assay accurately detects αSynagg seeding activity, offering a potential tool for antemortem diagnosis of α-synucleinopathies and other protein-misfolding disorders. Graphical Abstract A schematic representation of αSyn RT-QuIC assay.


Subject(s)
Brain Chemistry , Fluorometry/methods , High-Throughput Screening Assays/methods , Neuroglia/chemistry , Parkinsonian Disorders/metabolism , Protein Aggregates , alpha-Synuclein/analysis , Age Factors , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Animals , Benzothiazoles/analysis , Biomarkers/analysis , Biomarkers/cerebrospinal fluid , Case-Control Studies , Computer Systems , Fluorescent Dyes/analysis , Humans , Lewy Body Disease/metabolism , Mice , Microglia/chemistry , Middle Aged , Parkinsonian Disorders/cerebrospinal fluid , Parkinsonian Disorders/diagnosis , Recombinant Proteins/analysis , Reproducibility of Results , Sensitivity and Specificity , Single-Blind Method , Synucleinopathies/cerebrospinal fluid , Synucleinopathies/diagnosis , Synucleinopathies/metabolism , alpha-Synuclein/cerebrospinal fluid
10.
Prion ; 11(6): 415-430, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29098931

ABSTRACT

Prion diseases are transmissible spongiform encephalopathies (TSEs) characterized by fatal, progressive neurologic diseases with prolonged incubation periods and an accumulation of infectious misfolded prion proteins. Antemortem diagnosis is often difficult due to a long asymptomatic incubation period, differences in the pathogenesis of different prions, and the presence of very low levels of infectious prion in easily accessible samples. Chronic wasting disease (CWD) is a TSE affecting both wild and captive populations of cervids, including mule deer, white-tailed deer, elk, moose, muntjac, and most recently, wild reindeer. This study represents a well-controlled evaluation of a newly developed real-time quaking-induced conversion (RT-QuIC) assay as a potential CWD diagnostic screening test using rectal biopsy sections from a depopulated elk herd. We evaluated 69 blinded samples of recto-anal mucosa-associated lymphoid tissue (RAMALT) obtained from USDA Veterinary Services. The results were later un-blinded and statistically compared to immunohistochemical (IHC) results from the USDA National Veterinary Services Laboratories (NVSL) for RAMALT, obex, and medial retropharyngeal lymph node (MRPLN). Comparison of RAMALT RT-QuIC assay results with the IHC results of RAMALT revealed 92% relative sensitivity (95% confidence limits: 61.52-99.8%) and 95% relative specificity (95% confidence limits: 85.13-99%). Collectively, our results show a potential utility of the RT-QuIC assay to advance the development of a rapid, sensitive, and specific prion diagnostic assay for CWD prions.


Subject(s)
Biological Assay/methods , Lymphoid Tissue/metabolism , Wasting Disease, Chronic/diagnosis , Animals , Deer , Immunohistochemistry , Prion Diseases/diagnosis , Prion Diseases/metabolism , Wasting Disease, Chronic/metabolism
11.
J Virol ; 91(19)2017 10 01.
Article in English | MEDLINE | ID: mdl-28701407

ABSTRACT

Chronic wasting disease (CWD) is a naturally occurring, fatal neurodegenerative disease of cervids. The potential for swine to serve as hosts for the agent of CWD is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Crossbred piglets were assigned to three groups, intracranially inoculated (n = 20), orally inoculated (n = 19), and noninoculated (n = 9). At approximately the age at which commercial pigs reach market weight, half of the pigs in each group were culled ("market weight" groups). The remaining pigs ("aged" groups) were allowed to incubate for up to 73 months postinoculation (mpi). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by Western blotting (WB), antigen capture enzyme immunoassay (EIA), immunohistochemistry (IHC), and in vitro real-time quaking-induced conversion (RT-QuIC). Brain samples from selected pigs were also bioassayed in mice expressing porcine prion protein. Four intracranially inoculated aged pigs and one orally inoculated aged pig were positive by EIA, IHC, and/or WB. By RT-QuIC, PrPSc was detected in lymphoid and/or brain tissue from one or more pigs in each inoculated group. The bioassay was positive in four out of five pigs assayed. This study demonstrates that pigs can support low-level amplification of CWD prions, although the species barrier to CWD infection is relatively high. However, detection of infectivity in orally inoculated pigs with a mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity.IMPORTANCE We challenged domestic swine with the chronic wasting disease agent by inoculation directly into the brain (intracranially) or by oral gavage (orally). Disease-associated prion protein (PrPSc) was detected in brain and lymphoid tissues from intracranially and orally inoculated pigs as early as 8 months of age (6 months postinoculation). Only one pig developed clinical neurologic signs suggestive of prion disease. The amount of PrPSc in the brains and lymphoid tissues of positive pigs was small, especially in orally inoculated pigs. Regardless, positive results obtained with orally inoculated pigs suggest that it may be possible for swine to serve as a reservoir for prion disease under natural conditions.


Subject(s)
Brain/pathology , Disease Reservoirs/veterinary , Prion Proteins/isolation & purification , Swine Diseases/transmission , Wasting Disease, Chronic/transmission , Animals , Biological Assay/methods , Mice , Swine , Swine Diseases/diagnosis , Wasting Disease, Chronic/diagnosis
12.
Sci Rep ; 7: 43155, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28233859

ABSTRACT

Protein misfolding is a key pathological event in neurodegenerative diseases like prion diseases, synucleinopathies, and tauopathies that are collectively termed protein misfolding disorders. Prions are a prototypic model to study protein aggregation biology and therapeutic development. Attempts to develop anti-prion therapeutics have been impeded by the lack of screening models that faithfully replicate prion diseases and the lack of rapid, sensitive biological screening systems. Therefore, a sensitive model encompassing prion replication and neurotoxicity would be indispensable to the pursuit of intervention strategies. We present an ultra-sensitive screening system coupled to an ex vivo prion organotypic slice culture model to rapidly advance rationale-based high-throughput therapeutic strategies. This hybrid Organotypic Slice Culture Assay coupled with RT-QuIC (OSCAR) permits sensitive, specific and quantitative detection of prions from an infectious slice culture model on a reduced time scale. We demonstrate that the anti-prion activity of test compounds can be readily resolved based on the power and kinetics of seeding activity in the OSCAR screening platform and that the prions generated in slice cultures are biologically active. Collectively, our results imply that OSCAR is a robust model of prion diseases that offers a promising platform for understanding prion proteinopathies and advancing anti-prion therapeutics.


Subject(s)
Brain/pathology , Diagnostic Tests, Routine/methods , Mass Screening/methods , Prion Diseases/diagnosis , Prion Diseases/pathology , Animals , Disease Models, Animal , Mice, Inbred C57BL
13.
Am J Pathol ; 186(9): 2302-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27521336

ABSTRACT

Currently, there is a lack of pathological landmarks to describe the progression of prion disease in vivo. Our goal was to use an experimental model to determine the temporal relationship between the transport of misfolded prion protein (PrP(Sc)) from the brain to the retina, the accumulation of PrP(Sc) in the retina, the response of the surrounding retinal tissue, and loss of neurons. Retinal samples from mice inoculated with RML scrapie were collected at 30, 60, 90, 105, and 120 days post inoculation (dpi) or at the onset of clinical signs of disease (153 dpi). Retinal homogenates were tested for prion seeding activity. Antibody staining was used to assess accumulation of PrP(Sc) and the resulting response of retinal tissue. Loss of photoreceptors was used as a measure of neuronal death. PrP(Sc) seeding activity was first detected in all samples at 60 dpi. Accumulation of PrP(Sc) and coincident activation of retinal glia were first detected at 90 dpi. Activation of microglia was first detected at 105 dpi, but neuronal death was not detectable until 120 dpi. Our results demonstrate that by using the retina we can resolve the temporal separation between several key events in the pathogenesis of prion disease.


Subject(s)
Neuroglia/pathology , Neurons/pathology , PrPSc Proteins/metabolism , Retina/pathology , Animals , Cell Death/physiology , Disease Models, Animal , Immunohistochemistry , Mice , Mice, Inbred C57BL , Prion Diseases/metabolism , Prion Diseases/pathology , Protein Transport/physiology
14.
Pharmacol Res ; 107: 229-233, 2016 05.
Article in English | MEDLINE | ID: mdl-27025785

ABSTRACT

This review synthesizes examples of pharmacological agents who have off-target effects of an epigenetic nature. We expand upon the paradigm of epigenetics to include "quasi-epigenetic" mechanisms. Quasi-epigenetics includes mechanisms of drugs acting upstream of epigenetic machinery or may themselves impact transcription factor regulation on a more global scale. We explore these avenues with four examples of conventional pharmaceuticals and their unintended, but not necessarily adverse, biological effects. The quasi-epigenetic drugs identified in this review include the use of beta-lactam antibiotics to alter glutamate receptor activity and the action of cyclosporine on multiple transcription factors. In addition, we report on more canonical epigenome changes associated with pharmacological agents such as lithium impacting autophagy of aberrant proteins, and opioid drugs whose chronic use increases the expression of genes associated with addictive phenotypes. By expanding our appreciation of transcriptomic regulation and the effects these drugs have on the epigenome, it is possible to enhance therapeutic applications by exploiting off-target effects and even repurposing established pharmaceuticals. That is, exploration of "pharmacoepigenetic" mechanisms can expand the breadth of the useful activity of a drug beyond the traditional drug targets such as receptors and enzymes.


Subject(s)
Analgesics, Opioid/pharmacology , Cyclosporine/pharmacology , Epigenesis, Genetic , Gene Expression Regulation/drug effects , Lithium Compounds/pharmacology , beta-Lactams/pharmacology , Amino Acid Transport System X-AG/genetics , Anti-Bacterial Agents/pharmacology , Immunosuppressive Agents/pharmacology , Neuroprotective Agents/pharmacology , Receptors, Opioid/metabolism
15.
Genes Dis ; 2(3): 247-254, 2015 Sep.
Article in English | MEDLINE | ID: mdl-30258868

ABSTRACT

This review considers available evidence for mechanisms of conferred adaptive advantages in the face of specific infectious diseases. In short, we explore a number of genetic conditions, which carry some benefits in adverse circumstances including exposure to infectious agents. The examples discussed are conditions known to result in resistance to a specific infectious disease, or have been proposed as being associated with resistance to various infectious diseases. These infectious disease-genetic disorder pairings include malaria and hemoglobinopathies, cholera and cystic fibrosis, tuberculosis and Tay-Sachs disease, mycotic abortions and phenylketonuria, infection by enveloped viruses and disorders of glycosylation, infection by filoviruses and Niemann-Pick C1 disease, as well as rabies and myasthenia gravis. We also discuss two genetic conditions that lead to infectious disease hypersusceptibility, although we did not cover the large number of immunologic defects leading to infectious disease hypersusceptibilities. Four of the resistance-associated pairings (malaria/hemogloginopathies, cholera/cystic fibrosis, tuberculosis/Tay-Sachs, and mycotic abortions/phenylketonuria) appear to be a result of selection pressures in geographic regions in which the specific infectious agent is endemic. The other pairings do not appear to be based on selection pressure and instead may be serendipitous. Nonetheless, research investigating these relationships may lead to treatment options for the aforementioned diseases by exploiting established mechanisms between genetically affected cells and infectious organisms. This may prove invaluable as a starting point for research in the case of diseases that currently have no reliably curative treatments, e.g., HIV, rabies, and Ebola.

SELECTION OF CITATIONS
SEARCH DETAIL
...