Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Neuroradiology ; 64(6): 1145-1156, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34719725

ABSTRACT

INTRODUCTION: In order to augment the certainty of the radiological interpretation of "possible microbleeds" after traumatic brain injury (TBI), we assessed their longitudinal evolution on 3-T SWI in patients with moderate/severe TBI. METHODS: Standardized 3-T SWI and T1-weighted imaging were obtained 3 and 26 weeks after TBI in 31 patients. Their microbleeds were computer-aided detected and classified by a neuroradiologist as no, possible, or definite at baseline and follow-up, separately (single-scan evaluation). Thereafter, the classifications were re-evaluated after comparison between the time-points (post-comparison evaluation). We selected the possible microbleeds at baseline at single-scan evaluation and recorded their post-comparison classification at follow-up. RESULTS: Of the 1038 microbleeds at baseline, 173 were possible microbleeds. Of these, 53.8% corresponded to no microbleed at follow-up. At follow-up, 30.6% were possible and 15.6% were definite. Of the 120 differences between baseline and follow-up, 10% showed evidence of a pathophysiological change over time. Proximity to extra-axial injury and proximity to definite microbleeds were independently predictive of becoming a definite microbleed at follow-up. The reclassification level differed between anatomical locations. CONCLUSIONS: Our findings support disregarding possible microbleeds in the absence of clinical consequences. In selected cases, however, a follow-up SWI-scan could be considered to exclude evolution into a definite microbleed.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Radiography
3.
Eur Radiol ; 31(8): 6001-6012, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33492473

ABSTRACT

Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. KEY POINTS: • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.


Subject(s)
Radiology , Tomography, X-Ray Computed , Biomarkers , Consensus , Humans , Image Processing, Computer-Assisted
4.
Med Image Anal ; 66: 101810, 2020 12.
Article in English | MEDLINE | ID: mdl-32920477

ABSTRACT

The triage of acute stroke patients is increasingly dependent on four-dimensional CTA (4D-CTA) imaging. In this work, we present a convolutional neural network (CNN) for image-level detection of intracranial anterior circulation artery occlusions in 4D-CTA. The method uses a normalized 3D time-to-signal (TTS) representation of the input image, which is sensitive to differences in the global arrival times caused by the potential presence of vascular pathologies. The TTS map presents the time within the cranial cavity at which the signal reaches a percentage of the maximum signal intensity, corrected for the baseline intensity. The method was trained and validated on (n=214) patient images and tested on an independent set of (n=279) patient images. This test set included all consecutive suspected-stroke patients admitted to our hospital in 2018. The accuracy, sensitivity, and specificity were 92%, 95%, and 92%. The area under the receiver operating characteristics curve was 0.98 (95% CI: 0.95- 0.99). These results show the feasibility of automated stroke triage in 4D-CTA.


Subject(s)
Deep Learning , Stroke , Humans , Neural Networks, Computer , Sensitivity and Specificity , Stroke/diagnostic imaging
5.
Radiol Artif Intell ; 2(4): e190178, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33937832

ABSTRACT

PURPOSE: To implement and test a deep learning approach for the segmentation of the arterial and venous cerebral vasculature with four-dimensional (4D) CT angiography. MATERIALS AND METHODS: Patients who had undergone 4D CT angiography for the suspicion of acute ischemic stroke were retrospectively identified. A total of 390 patients evaluated in 2014 (n = 113) or 2018 (n = 277) were included in this study, with each patient having undergone one 4D CT angiographic scan. One hundred patients from 2014 were randomly selected, and the arteries and veins on their CT scans were manually annotated by five experienced observers. The weighted temporal average and weighted temporal variance from 4D CT angiography were used as input for a three-dimensional Dense-U-Net. The network was trained with the fully annotated cerebral vessel artery-vein maps from 60 patients. Forty patients were used for quantitative evaluation. The relative absolute volume difference and the Dice similarity coefficient are reported. The neural network segmentations from 277 patients who underwent scanning in 2018 were qualitatively evaluated by an experienced neuroradiologist using a five-point scale. RESULTS: The average time for processing arterial and venous cerebral vasculature with the network was less than 90 seconds. The mean Dice similarity coefficient in the test set was 0.80 ± 0.04 (standard deviation) for the arteries and 0.88 ± 0.03 for the veins. The mean relative absolute volume difference was 7.3% ± 5.7 for the arteries and 8.5% ± 4.8 for the veins. Most of the segmentations (n = 273, 99.3%) were rated as very good to perfect. CONCLUSION: The proposed convolutional neural network enables accurate artery and vein segmentation with 4D CT angiography with a processing time of less than 90 seconds.© RSNA, 2020.

6.
IEEE Trans Med Imaging ; 39(4): 985-996, 2020 04.
Article in English | MEDLINE | ID: mdl-31484111

ABSTRACT

The imaging workup in acute stroke can be simplified by deriving non-contrast CT (NCCT) from CT perfusion (CTP) images. This results in reduced workup time and radiation dose. To achieve this, we present a stacked bidirectional convolutional LSTM (C-LSTM) network to predict 3D volumes from 4D spatiotemporal data. Several parameterizations of the C-LSTM network were trained on a set of 17 CTP-NCCT pairs to learn to derive a NCCT from CTP and were subsequently quantitatively evaluated on a separate cohort of 16 cases. The results show that the C-LSTM network clearly outperforms the baseline and competitive convolutional neural network methods. We show good scalability and performance of the method by continued training and testing on an independent dataset which includes pathology of 80 and 83 CTP-NCCT pairs, respectively. C-LSTM is, therefore, a promising general deep learning approach to learn from high-dimensional spatiotemporal medical images.


Subject(s)
Deep Learning , Four-Dimensional Computed Tomography/methods , Aged , Brain/diagnostic imaging , Female , Humans , Male , Middle Aged , Perfusion Imaging/methods , Stroke/diagnostic imaging
7.
Sci Rep ; 9(1): 17858, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780815

ABSTRACT

A 3-dimensional (3D) convolutional neural network is presented for the segmentation and quantification of spontaneous intracerebral haemorrhage (ICH) in non-contrast computed tomography (NCCT). The method utilises a combination of contextual information on multiple scales for fast and fully automatic dense predictions. To handle a large class imbalance present in the data, a weight map is introduced during training. The method was evaluated on two datasets of 25 and 50 patients respectively. The reference standard consisted of manual annotations for each ICH in the dataset. Quantitative analysis showed a median Dice similarity coefficient of 0.91 [0.87-0.94] and 0.90 [0.85-0.92] for the two test datasets in comparison to the reference standards. Evaluation of a separate dataset of 5 patients for the assessment of the observer variability produced a mean Dice similarity coefficient of 0.95 ± 0.02 for the inter-observer variability and 0.97 ± 0.01 for the intra-observer variability. The average prediction time for an entire volume was 104 ± 15 seconds. The results demonstrate that the method is accurate and approaches the performance of expert manual annotation.


Subject(s)
Cerebral Hemorrhage/diagnostic imaging , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Aged , Aged, 80 and over , Female , Humans , Imaging, Three-Dimensional/standards , Male , Middle Aged , Neural Networks, Computer , Observer Variation , Tomography, X-Ray Computed/standards
8.
Insights Imaging ; 10(1): 87, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31468205

ABSTRACT

Observer-driven pattern recognition is the standard for interpretation of medical images. To achieve global parity in interpretation, semi-quantitative scoring systems have been developed based on observer assessments; these are widely used in scoring coronary artery disease, the arthritides and neurological conditions and for indicating the likelihood of malignancy. However, in an era of machine learning and artificial intelligence, it is increasingly desirable that we extract quantitative biomarkers from medical images that inform on disease detection, characterisation, monitoring and assessment of response to treatment. Quantitation has the potential to provide objective decision-support tools in the management pathway of patients. Despite this, the quantitative potential of imaging remains under-exploited because of variability of the measurement, lack of harmonised systems for data acquisition and analysis, and crucially, a paucity of evidence on how such quantitation potentially affects clinical decision-making and patient outcome. This article reviews the current evidence for the use of semi-quantitative and quantitative biomarkers in clinical settings at various stages of the disease pathway including diagnosis, staging and prognosis, as well as predicting and detecting treatment response. It critically appraises current practice and sets out recommendations for using imaging objectively to drive patient management decisions.

9.
J Neuroradiol ; 46(2): 124-129, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29625153

ABSTRACT

BACKGROUND AND PURPOSE: To evaluate whether brain CT perfusion (CTP) aids in the detection of intracranial vessel occlusion on CT angiography (CTA) in acute ischemic stroke. MATERIALS AND METHODS: Medical-ethical committee approval of our hospital was obtained and informed consent was waived. Patients suspected of acute ischemic stroke who underwent non-contrast CT(NCCT), CTA and whole-brain CTP in our center in the year 2015 were included. Three observers with different levels of experience evaluated the imaging data of 110 patients for the presence or absence of intracranial arterial vessel occlusion with two strategies. In the first strategy, only NCCT and CTA were available. In the second strategy, CTP maps were provided in addition to NCCT and CTA. Receiver-operating-characteristic (ROC) analysis was used for the evaluation of diagnostic accuracy. RESULTS: Overall, a brain perfusion deficit was scored present in 87-89% of the patients with an intracranial vessel occlusion, more frequently observed in the anterior than in the posterior circulation. Performance of intracranial vessel occlusion detection on CTA was significantly improved with the availability of CTP maps as compared to the first strategy (P=0.023), due to improved detection of distal and posterior circulation vessel occlusions (P-values of 0.032 and 0.003 respectively). No added value of CTP was found for intracranial proximal vessel occlusion detection, with already high accuracy based on NCCT and CTA alone. CONCLUSION: The performance of intracranial vessel occlusion detection on CTA was improved with the availability of brain CT perfusion maps due to the improved detection of distal and posterior circulation vessel occlusions.


Subject(s)
Brain Ischemia/diagnostic imaging , Cerebral Angiography/methods , Computed Tomography Angiography/methods , Stroke/diagnostic imaging , Brain Ischemia/drug therapy , Cerebrovascular Circulation , Contrast Media , Female , Humans , Iopamidol/analogs & derivatives , Magnetic Resonance Imaging , Male , Middle Aged , Radiographic Image Interpretation, Computer-Assisted , Retrospective Studies , Stroke/drug therapy , Thrombolytic Therapy/methods , Time-to-Treatment
10.
Sci Rep ; 8(1): 7889, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29760497

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

11.
World Neurosurg ; 114: 421-426.e1, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29530689

ABSTRACT

BACKGROUND: In case of carotid artery occlusion, the risk and extent of ischemic cerebral damage are highly dependent on the pathways of collateral flow including the anatomy of the circle of Willis. In this report, cases are presented to illustrate that 4-dimensional computed tomography angiography (4D-CTA) can be considered as a noninvasive alternative to digital subtraction angiography for the evaluation of circle of Willis collateral flow. CASE DESCRIPTION: Five patients with unilateral internal carotid artery (ICA) occlusion underwent 4D-CTA for the evaluation of intracranial hemodynamics. Next to a visual evaluation of 4D-CTA, temporal information was visualized using a normalized color scale on the cerebral vasculature, which enabled quantification of the contrast bolus arrival time. In these patients, 4D-CTA demonstrated dominant middle cerebral artery blood supply on the side of ICA occlusion originating from either the contralateral ICA or posterior circulation via the communicating arteries. CONCLUSIONS: Temporal dynamics of collateral flow in the circle of Willis can be depicted with 4D-CTA in patients with a unilateral carotid artery occlusion.


Subject(s)
Carotid Artery Diseases/diagnostic imaging , Carotid Artery, Internal/diagnostic imaging , Carotid Artery, Internal/surgery , Circle of Willis/diagnostic imaging , Collateral Circulation/physiology , Computed Tomography Angiography/methods , Four-Dimensional Computed Tomography/methods , Aged , Carotid Artery Diseases/surgery , Circle of Willis/surgery , Humans , Male , Middle Aged
12.
Eur Radiol ; 28(9): 3902-3911, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29572637

ABSTRACT

OBJECTIVES: To assess observer variability of different reference tissues used for relative CBV (rCBV) measurements in DSC-MRI of glioma patients. METHODS: In this retrospective study, three observers measured rCBV in DSC-MR images of 44 glioma patients on two occasions. rCBV is calculated by the CBV in the tumour hotspot/the CBV of a reference tissue at the contralateral side for normalization. One observer annotated the tumour hotspot that was kept constant for all measurements. All observers annotated eight reference tissues of normal white and grey matter. Observer variability was evaluated using the intraclass correlation coefficient (ICC), coefficient of variation (CV) and Bland-Altman analyses. RESULTS: For intra-observer, the ICC ranged from 0.50-0.97 (fair-excellent) for all reference tissues. The CV ranged from 5.1-22.1 % for all reference tissues and observers. For inter-observer, the ICC for all pairwise observer combinations ranged from 0.44-0.92 (poor-excellent). The CV ranged from 8.1-31.1 %. Centrum semiovale was the only reference tissue that showed excellent intra- and inter-observer agreement (ICC>0.85) and lowest CVs (<12.5 %). Bland-Altman analyses showed that mean differences for centrum semiovale were close to zero. CONCLUSION: Selecting contralateral centrum semiovale as reference tissue for rCBV provides the lowest observer variability. KEY POINTS: • Reference tissue selection for rCBV measurements adds variability to rCBV measurements. • rCBV measurements vary depending on the choice of reference tissue. • Observer variability of reference tissue selection varies between poor and excellent. • Centrum semiovale as reference tissue for rCBV provides the lowest observer variability.


Subject(s)
Blood Volume Determination/methods , Brain Neoplasms/blood supply , Brain Neoplasms/diagnostic imaging , Glioma/blood supply , Glioma/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Aged , Brain Neoplasms/pathology , Contrast Media , Female , Glioma/pathology , Gray Matter/blood supply , Gray Matter/diagnostic imaging , Humans , Male , Middle Aged , Observer Variation , Reference Values , Retrospective Studies , White Matter/blood supply , White Matter/diagnostic imaging , Young Adult
13.
Sci Rep ; 7(1): 15622, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29142240

ABSTRACT

A robust method is presented for the segmentation of the full cerebral vasculature in 4-dimensional (4D) computed tomography (CT). The method consists of candidate vessel selection, feature extraction, random forest classification and postprocessing. Image features include among others the weighted temporal variance image and parameters, including entropy, of an intensity histogram in a local region at different scales. These histogram parameters revealed to be a strong feature in the detection of vessels regardless of shape and size. The method was trained and tested on a large database of 264 patients with suspicion of acute ischemia who underwent 4D CT in our hospital in the period January 2014 to December 2015. Five subvolumes representing different regions of the cerebral vasculature were annotated in each image in the training set by medical assistants. The evaluation was done on 242 patients. A total of 16 (<8%) patients showed severe under or over segmentation and were reported as failures. One out of five subvolumes was randomly annotated in 159 patients and was used for quantitative evaluation. Quantitative evaluation showed a Dice coefficient of 0.91 ± 0.07 and a modified Hausdorff distance of 0.23 ± 0.22 mm. Therefore, robust vessel segmentation in 4D CT is feasible with good accuracy.


Subject(s)
Blood Vessels/diagnostic imaging , Four-Dimensional Computed Tomography/methods , Ischemia/diagnostic imaging , Stroke/diagnostic imaging , Algorithms , Blood Vessels/physiopathology , Humans , Image Processing, Computer-Assisted/methods , Ischemia/physiopathology , Pattern Recognition, Automated , Stroke/physiopathology
14.
Sci Rep ; 7(1): 119, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28273920

ABSTRACT

Modern Computed Tomography (CT) scanners are capable of acquiring contrast dynamics of the whole brain, adding functional to anatomical information. Soft tissue segmentation is important for subsequent applications such as tissue dependent perfusion analysis and automated detection and quantification of cerebral pathology. In this work a method is presented to automatically segment white matter (WM) and gray matter (GM) in contrast- enhanced 4D CT images of the brain. The method starts with intracranial segmentation via atlas registration, followed by a refinement using a geodesic active contour with dominating advection term steered by image gradient information, from a 3D temporal average image optimally weighted according to the exposures of the individual time points of the 4D CT acquisition. Next, three groups of voxel features are extracted: intensity, contextual, and temporal. These are used to segment WM and GM with a support vector machine. Performance was assessed using cross validation in a leave-one-patient-out manner on 22 patients. Dice coefficients were 0.81 ± 0.04 and 0.79 ± 0.05, 95% Hausdorff distances were 3.86 ± 1.43 and 3.07 ± 1.72 mm, for WM and GM, respectively. Thus, WM and GM segmentation is feasible in 4D CT with good accuracy.


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Four-Dimensional Computed Tomography/methods , Gray Matter/diagnostic imaging , White Matter/diagnostic imaging , Adult , Aged , Aged, 80 and over , Brain/pathology , Contrast Media , Female , Gray Matter/pathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Pattern Recognition, Automated , ROC Curve , Support Vector Machine , White Matter/pathology
15.
Eur Radiol ; 27(6): 2411-2418, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27651144

ABSTRACT

OBJECTIVES: Feasibility evaluation of the One-Step Stroke Protocol, which is an interleaved cerebral computed tomography perfusion (CTP) and neck volumetric computed tomography angiography (vCTA) scanning technique using wide-detector computed tomography, and to assess the image quality of vCTA. METHODS: Twenty patients with suspicion of acute ischaemic stroke were prospectively scanned and evaluated with a head and neck CTA and with the One-Step Stroke Protocol. Arterial enhancement and contrast-to-noise ratio (CNR) in the carotid arteries was assessed. Three observers scored artefacts and image quality of the cervical arteries. The total z-coverage was evaluated. RESULTS: Mean enhancement in the carotid bifurcation was rated higher in the vCTA (595 ± 164 HU) than CTA (441 ± 117 HU). CNR was rated higher in vCTA. Image quality scores showed no significant difference in the region of the carotid bifurcation between vCTA and CTA. Lower neck image quality scores were slightly lower for vCTA due to artefacts, although not rated as diagnostically relevant. In ten patients, the origin of the left common carotid artery was missed by 1.6 ± 0.8 cm. Mean patient height was 1.8 ± 0.09 m. Carotid bifurcation and origin of vertebral arteries were covered in all patients. CONCLUSIONS: The One-Step Stroke Protocol is feasible with good diagnostic image quality of vCTA, although full z-coverage is limited in tall patients. KEY POINTS: • Interleaving cerebral CTP with neck CTA (One-Step Stroke Protocol) is feasible • Diagnostic quality of One-Step Stroke Protocol neck CTA is similar to conventional CTA • One-Step Stroke Protocol neck CTA suffers from streak artefacts in the lower neck • A limitation of One-Step Stroke Protocol CTA is lack of coverage in tall patients • Precise planning of One-Step Stroke Protocol neck CTA is necessary in tall patients.


Subject(s)
Brain Ischemia/pathology , Stroke/pathology , Aged , Artifacts , Carotid Arteries/pathology , Carotid Artery, Common/pathology , Computed Tomography Angiography/methods , Computed Tomography Angiography/standards , Cone-Beam Computed Tomography/methods , Cone-Beam Computed Tomography/standards , Feasibility Studies , Female , Head , Humans , Magnetic Resonance Angiography/methods , Magnetic Resonance Angiography/standards , Male , Middle Aged , Multidetector Computed Tomography/methods , Multimodal Imaging/methods , Neck , Observer Variation , Signal-To-Noise Ratio , Vertebral Artery/pathology
16.
Eur Radiol ; 27(6): 2649-2656, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27718078

ABSTRACT

OBJECTIVES: We present a novel One-Step-Stroke protocol for wide-detector CT scanners that interleaves cerebral CTP with volumetric neck CTA (vCTA). We evaluate whether the resulting time gap in CTP affects the accuracy of CTP values. METHODS: Cerebral CTP maps were retrospectively obtained from 20 patients with suspicion of acute ischemic stroke and served as the reference standard. To simulate a 4 s gap for interleaving CTP with vCTA, we eliminated one acquisition at various time points of CTP starting from the bolus-arrival-time(BAT). Optimal timing of the vCTA was evaluated. At the time point with least errors, we evaluated elimination of a second time point (6 s gap). RESULTS: Mean absolute percentage errors of all perfusion values remained below 10 % in all patients when eliminating any one time point in the CTP sequence starting from the BAT. Acquiring the vCTA 2 s after reaching a threshold of 70HU resulted in the lowest errors (mean <3.0 %). Eliminating a second time point still resulted in mean errors <3.5 %. CBF/CBV showed no significant differences in perfusion values except MTT. However, the percentage errors were always below 10 % compared to the original protocol. CONCLUSION: Interleaving cerebral CTP with neck CTA is feasible with minor effects on the perfusion values. KEY POINTS: • Removing a single CTP acquisition has minor effects on calculated perfusion values • Calculated perfusion values errors depend on timing of skipping a CTP acquisition • Qualitative evaluation of CTP was not influenced by removing two time points • Neck CTA is optimally timed in the upslope of arterial enhancement.


Subject(s)
Cerebrovascular Circulation/physiology , Stroke/diagnostic imaging , Adult , Aged , Aged, 80 and over , Brain Ischemia/diagnostic imaging , Brain Ischemia/physiopathology , Cerebral Angiography/methods , Computed Tomography Angiography/methods , Female , Humans , Male , Middle Aged , Multidetector Computed Tomography/methods , Multimodal Imaging , Neck , Retrospective Studies , Stroke/physiopathology
17.
Med Image Anal ; 36: 216-228, 2017 02.
Article in English | MEDLINE | ID: mdl-28011374

ABSTRACT

A robust and accurate method is presented for the segmentation of the cranial cavity in computed tomography (CT) and CT perfusion (CTP) images. The method consists of multi-atlas registration with label fusion followed by a geodesic active contour levelset refinement of the segmentation. Pre-registration atlas selection based on differences in anterior skull anatomy reduces computation time whilst optimising performance. The method was evaluated on a large clinical dataset of 573 acute stroke and trauma patients that received a CT or CTP in our hospital in the period February 2015-December 2015. The database covers a large spectrum of the anatomical and pathological variations that is typically observed in everyday clinical practice. Three orthogonal slices were randomly selected per patient and manually annotated, resulting in 1659 reference annotations. Segmentations were initially visually inspected for the entire study cohort to assess failures. A total of 20 failures were reported. Quantitative evaluation in comparison to the reference dataset showed a mean Dice coefficient of 98.36 ±  2.59%. The results demonstrate that the method closely approaches the high performance of expert manual annotation.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Head/diagnostic imaging , Perfusion , Stroke/diagnostic imaging , Tomography, X-Ray Computed/methods , Algorithms , Brain Injuries, Traumatic/pathology , Head/pathology , Humans , Stroke/pathology
18.
PeerJ ; 4: e2683, 2016.
Article in English | MEDLINE | ID: mdl-27917312

ABSTRACT

Brain perfusion is of key importance to assess brain function. Modern CT scanners can acquire perfusion maps of the cerebral parenchyma in vivo at submillimeter resolution. These perfusion maps give insights into the hemodynamics of the cerebral parenchyma and are critical for example for treatment decisions in acute stroke. However, the relations between acquisition parameters, tissue attenuation curves, and perfusion values are still poorly understood and cannot be unraveled by studies involving humans because of ethical concerns. We present a 4D CT digital phantom specific for an individual human brain to analyze these relations in a bottom-up fashion. Validation of the signal and noise components was based on 1,000 phantom simulations of 20 patient imaging data. This framework was applied to quantitatively assess the relation between radiation dose and perfusion values, and to quantify the signal-to-noise ratios of penumbra regions with decreasing sizes in white and gray matter. This is the first 4D CT digital phantom that enables to address clinical questions without having to expose the patient to additional radiation dose.

19.
Med Phys ; 43(7): 4074, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27370126

ABSTRACT

PURPOSE: Automated 3D breast ultrasound (ABUS) has been proposed as a complementary screening modality to mammography for early detection of breast cancers. To facilitate the interpretation of ABUS images, automated diagnosis and detection techniques are being developed, in which malignant lesion segmentation plays an important role. However, automated segmentation of cancer in ABUS is challenging since lesion edges might not be well defined. In this study, the authors aim at developing an automated segmentation method for malignant lesions in ABUS that is robust to ill-defined cancer edges and posterior shadowing. METHODS: A segmentation method using depth-guided dynamic programming based on spiral scanning is proposed. The method automatically adjusts aggressiveness of the segmentation according to the position of the voxels relative to the lesion center. Segmentation is more aggressive in the upper part of the lesion (close to the transducer) than at the bottom (far away from the transducer), where posterior shadowing is usually visible. The authors used Dice similarity coefficient (Dice) for evaluation. The proposed method is compared to existing state of the art approaches such as graph cut, level set, and smart opening and an existing dynamic programming method without depth dependence. RESULTS: In a dataset of 78 cancers, our proposed segmentation method achieved a mean Dice of 0.73 ± 0.14. The method outperforms an existing dynamic programming method (0.70 ± 0.16) on this task (p = 0.03) and it is also significantly (p < 0.001) better than graph cut (0.66 ± 0.18), level set based approach (0.63 ± 0.20) and smart opening (0.65 ± 0.12). CONCLUSIONS: The proposed depth-guided dynamic programming method achieves accurate breast malignant lesion segmentation results in automated breast ultrasound.


Subject(s)
Breast Neoplasms/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Ultrasonography, Mammary/methods , Algorithms , Datasets as Topic , Humans , Models, Theoretical , Observer Variation
20.
Article in English | MEDLINE | ID: mdl-27249826

ABSTRACT

Cardiovascular disease (CVD) is a leading cause of death and is in the majority of cases due to the formation of atherosclerotic plaques in arteries. Initially, thickening of the inner layer of the arterial wall occurs. Continuation of this process leads to plaque formation. The risk of a plaque to rupture and thus to induce an ischemic event is directly related to its composition. Consequently, characterization of the plaque composition and its proneness to rupture are of crucial importance for risk assessment and treatment strategies. The carotid is an excellent artery to be imaged with ultrasound because of its superficial position. In this review, ultrasound-based methods for characterizing the mechanical properties of the carotid wall and atherosclerotic plaque are discussed. Using conventional echography, the intima media thickness (IMT) can be quantified. There is a wealth of studies describing the relation between IMT and the risk for myocardial infarction and stroke. Also the carotid distensibility can be quantified with ultrasound, providing a surrogate marker for the cross-sectional mechanical properties. Although all these parameters are associated with CVD, they do not easily translate to individual patient risk. Another technique is pulse wave velocity (PWV) assessment, which measures the propagation of the pressure pulse over the arterial bed. PWV has proven to be a marker for global arterial stiffness. Recently, an ultrasound-based method to estimate the local PWV has been introduced, but the clinical effectiveness still needs to be established. Other techniques focus on characterization of plaques. With ultrasound elastography, the strain in the plaque due to the pulsatile pressure can be quantified. This technique was initially developed using intravascular catheters to image coronaries, but recently noninvasive methods were successfully developed. A high correlation between the measured strain and the risk for rupture was established. Acoustic radiation force impulse (ARFI) imaging also provides characterization of local plaque components based on mechanical properties. However, both elastography and ARFI provide an indirect measure of the elastic modulus of tissue. With shear wave imaging, the elastic modulus can be quantified, although the carotid artery is one of the most challenging tissues for this technique due to its size and geometry. Prospective studies still have to establish the predictive value of these techniques for the individual patient. Validation of ultrasound-based mechanical characterization of arteries and plaques remains challenging. Magnetic resonance imaging is often used as the "gold" standard for plaque characterization, but its limited resolution renders only global characterization of the plaque. CT provides information on the vascular tree, the degree of stenosis, and the presence of calcified plaque, while soft plaque characterization remains limited. Histology still is the gold standard, but is available only if tissue is excised. In conclusion, elastographic ultrasound techniques are well suited to characterize the different stages of vascular disease.


Subject(s)
Carotid Arteries/diagnostic imaging , Carotid Intima-Media Thickness , Carotid Stenosis/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Carotid Arteries/pathology , Humans , Pulse Wave Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...