Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 243(1): 407-422, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750646

ABSTRACT

Strong disturbances may induce ecosystem transitions into new alternative states that sustain through plant-soil interactions, such as the transition of dwarf shrub-dominated into graminoid-dominated vegetation by herbivory in tundra. Little evidence exists on soil microbial communities in alternative states, and along the slow process of ecosystem return into the predisturbance state. We analysed vegetation, soil microbial communities and activities as well as soil physico-chemical properties in historical reindeer enclosures in northernmost Finland in the following plot types: control heaths in the surrounding tundra; graminoid-dominated; 'shifting'; and recovered dwarf shrub-dominated vegetation inside enclosures. Soil fungal communities followed changes in vegetation, whereas bacterial communities were more affected by soil physico-chemical properties. Graminoid plots were characterized by moulds, pathotrophs and dark septate endophytes. Ericoid mycorrhizal and saprotrophic fungi were typical for control and recovered plots. Soil microbial communities inside the enclosures showed historical contingency, as their spatial variation was high in recovered plots despite the vegetation being more homogeneous. Self-maintaining feedback loops between plant functional types, soil microbial communities, and carbon and nutrient mineralization act effectively to stabilize alternative vegetation states, but once predisturbance vegetation reestablishes itself, soil microbial communities and physico-chemical properties return back towards their predisturbance state.


Subject(s)
Bacteria , Fungi , Soil Microbiology , Soil , Tundra , Soil/chemistry , Fungi/physiology , Bacteria/classification , Finland , Chemical Phenomena , Plants/microbiology
2.
Oecologia ; 204(3): 689-704, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38478083

ABSTRACT

Subarctic ecosystems are subjected to increasing nitrogen (N) enrichment and disturbances that induce particularly strong effects on plant communities when occurring in combination. There is little experimental evidence on the longevity of these effects. We applied N-fertilization (40 kg urea-N ha-1 year-1 for 4 years) and disturbance (removal of vegetation and organic soil layer on one occasion) in two plant communities in a subarctic forest-tundra ecotone in northern Finland. Within the first four years, N-fertilization and disturbance increased the share of deciduous dwarf shrubs and graminoids at the expense of evergreen dwarf shrubs. Individual treatments intensified the other's effect resulting in the strongest increase in graminoids under combined N-fertilization and disturbance. The re-analysis of the plant communities 15 years after cessation of N-fertilization showed an even higher share of graminoids. 18 years after disturbance, the total vascular plant abundance was still substantially lower and the share of graminoids higher. At the same point, the plant community composition was the same under disturbance as under combined N-fertilization and disturbance, indicating that multiple perturbations no longer reinforced the other's effect. Yet, complex interactions between N-fertilization and disturbance were still detected in the soil. We found higher organic N under disturbance and lower microbial N under combined N-fertilization and disturbance, which suggests a lower bioavailability of N sources for soil microorganisms. Our findings support that the effects of enhanced nutrients and disturbance on subarctic vegetation persist over decadal timescales. However, they also highlight the complexity of plant-soil interactions that drive subarctic ecosystem responses to multiple perturbations across varying timescales.


Subject(s)
Ecosystem , Tundra , Plants , Soil , Fertilization
SELECTION OF CITATIONS
SEARCH DETAIL
...