Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Cancer J ; 30(3): 159-169, 2024.
Article in English | MEDLINE | ID: mdl-38753750

ABSTRACT

ABSTRACT: Imaging glucose metabolism with [18F]fluorodeoxyglucose positron emission tomography has transformed the diagnostic and treatment algorithms of numerous malignancies in clinical practice. The cancer phenotype, though, extends beyond dysregulation of this single pathway. Reprogramming of other pathways of metabolism, as well as altered perfusion and hypoxia, also typifies malignancy. These features provide other opportunities for imaging that have been developed and advanced into humans. In this review, we discuss imaging metabolism, perfusion, and hypoxia in cancer, focusing on the underlying biology to provide context. We conclude by highlighting the ability to image multiple facets of biology to better characterize cancer and guide targeted treatment.


Subject(s)
Fluorodeoxyglucose F18 , Neoplasms , Positron-Emission Tomography , Humans , Fluorodeoxyglucose F18/metabolism , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Neoplasms/diagnosis , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Hypoxia/metabolism , Hypoxia/diagnostic imaging
2.
Mol Imaging Biol ; 26(2): 189-190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512546

Subject(s)
Biology , Molecular Imaging
3.
Mol Imaging Biol ; 25(6): 991-1019, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37845582

ABSTRACT

Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.


Subject(s)
Neoplasms , Radiopharmaceuticals , Radiopharmaceuticals/therapeutic use , Alpha Particles/therapeutic use , Radioisotopes/therapeutic use , Pharmaceutical Preparations , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/radiotherapy
4.
EJNMMI Radiopharm Chem ; 8(1): 15, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37486582

ABSTRACT

BACKGROUND: (S)-4-(3-18F-Fluoropropyl)-L-Glutamic Acid ([18F]FSPG) is a positron emission tomography (PET) tracer that specifically targets the cystine/glutamate antiporter (xc-), which is frequently overexpressed in cancer and several neurological disorders. Pilot studies examining the dosimetry and biodistribution of [18F]FSPG in healthy volunteers and tumor detection in patients with non-small cell lung cancer, hepatocellular carcinoma, and brain tumors showed promising results. In particular, low background uptake in the brain, lung, liver, and bowel was observed that further leads to excellent imaging contrasts of [18F]FSPG PET. However, reliable production-scale cGMP-compliant automated procedures for [18F]FSPG production are still lacking to further increase the utility and clinical adoption of this radiotracer. Herein, we report the optimized automated approaches to produce [18F]FSPG through two commercially available radiosynthesizers capable of supporting centralized and large-scale production for clinical use. RESULTS: Starting with activity levels of 60-85 GBq, the fully-automated process to produce [18F]FSPG took less than 45 min with average radiochemical yields of 22.56 ± 0.97% and 30.82 ± 1.60% (non-decay corrected) using TRACERlab™ FXFN and FASTlab™, respectively. The radiochemical purities were > 95% and the formulated [18F]FSPG solution was determined to be sterile and colorless with the pH of 6.5-7.5. No radiolysis of the product was observed up to 8 h after final batch formulation. CONCLUSIONS: In summary, cGMP-compliant radiosyntheses and quality control of [18F]FSPG have been established on two commercially available synthesizers leveraging high activity concentration and radiochemical purity. While the clinical trials using [18F]FSPG PET are currently underway, the automated approaches reported herein will accelerate the clinical adoption of this radiotracer and warrant centralized and large-scale production of [18F]FSPG.

5.
Tomography ; 9(2): 497-508, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36961000

ABSTRACT

Early response assessment is critical for personalizing cancer therapy. Emerging therapeutic regimens with encouraging results in the wild-type (WT) KRAS colorectal cancer (CRC) setting include inhibitors of epidermal growth factor receptor (EGFR) and glutaminolysis. Towards predicting clinical outcome, this preclinical study evaluated non-invasive positron emission tomography (PET) with (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG) in treatment-sensitive and treatment-resistant WT KRAS CRC patient-derived xenografts (PDXs). Tumor-bearing mice were imaged with [18F]FSPG PET before and one week following the initiation of treatment with either EGFR-targeted monoclonal antibody (mAb) therapy, glutaminase inhibitor therapy, or the combination. Imaging was correlated with tumor volume and histology. In PDX that responded to therapy, [18F]FSPG PET was significantly decreased from baseline at 1-week post-therapy, prior to changes in tumor volume. In contrast, [18F]FSPG PET was not decreased in non-responding PDX. These data suggest that [18F]FSPG PET may serve as an early metric of response to EGFR and glutaminase inhibition in the WT KRAS CRC setting.


Subject(s)
Colorectal Neoplasms , Glutaminase , Humans , Mice , Animals , Glutaminase/metabolism , Glutamine , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Glutamates/metabolism , Feasibility Studies , Positron-Emission Tomography/methods , ErbB Receptors/metabolism , Disease Models, Animal , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy
6.
Tomography ; 9(2): 657-680, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36961012

ABSTRACT

The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients' tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials.


Subject(s)
Neoplasms , Animals , Mice , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/pathology , Disease Models, Animal , Diagnostic Imaging
7.
Radiology ; 303(3): 620-631, 2022 06.
Article in English | MEDLINE | ID: mdl-35191738

ABSTRACT

Background The PET tracer (4S)-4-(3-[18F]fluoropropyl)-l-glutamate (18F-FSPG) targets the system xC- cotransporter, which is overexpressed in various tumors. Purpose To assess the role of 18F-FSPG PET/CT in intracranial malignancies. Materials and Methods Twenty-six patients (mean age, 54 years ± 12; 17 men; 48 total lesions) with primary brain tumors (n = 17) or brain metastases (n = 9) were enrolled in this prospective, single-center study (ClinicalTrials.gov identifier: NCT02370563) between November 2014 and March 2016. A 30-minute dynamic brain 18F-FSPG PET/CT scan and a static whole-body (WB) 18F-FSPG PET/CT scan at 60-75 minutes were acquired. Moreover, all participants underwent MRI, and four participants underwent fluorine 18 (18F) fluorodeoxyglucose (FDG) PET imaging. PET parameters and their relative changes were obtained for all lesions. Kinetic modeling was used to estimate the 18F-FSPG tumor rate constants using the dynamic and dynamic plus WB PET data. Imaging parameters were correlated to lesion outcomes, as determined with follow-up MRI and/or pathologic examination. The Mann-Whitney U test or Student t test was used for group mean comparisons. Receiver operating characteristic curve analysis was used for performance comparison of different decision measures. Results 18F-FSPG PET/CT helped identify all 48 brain lesions. The mean tumor-to-background ratio (TBR) on the whole-brain PET images at the WB time point was 26.6 ± 24.9 (range: 2.6-150.3). When 18F-FDG PET was performed, 18F-FSPG permitted visualization of non-18F-FDG-avid lesions or allowed better lesion differentiation from surrounding tissues. In participants with primary brain tumors, the predictive accuracy of the relative changes in influx rate constant Ki and maximum standardized uptake value to discriminate between poor and good lesion outcomes were 89% and 81%, respectively. There were significant differences in the 18F-FSPG uptake curves of lesions with good versus poor outcomes in the primary brain tumor group (P < .05) but not in the brain metastases group. Conclusion PET/CT imaging with (4S)-4-(3-[18F]fluoropropyl)-l-glutamate (18F-FSPG) helped detect primary brain tumors and brain metastases with a high tumor-to-background ratio. Relative changes in 18F-FSPG uptake with multi-time-point PET appear to be helpful in predicting lesion outcomes. Clinical trial registration no. NCT02370563 © RSNA, 2022 Online supplemental material is available for this article.


Subject(s)
Brain Neoplasms , Positron Emission Tomography Computed Tomography , Brain Neoplasms/diagnostic imaging , Fluorodeoxyglucose F18 , Glutamic Acid , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Prospective Studies , Radiopharmaceuticals
8.
J Nucl Med ; 63(1): 36-43, 2022 01.
Article in English | MEDLINE | ID: mdl-33931465

ABSTRACT

Altered metabolism is a hallmark of cancer. In addition to glucose, glutamine is an important nutrient for cellular growth and proliferation. Noninvasive imaging via PET may help facilitate precision treatment of cancer through patient selection and monitoring of treatment response. l-[5-11C]-glutamine (11C-glutamine) is a PET tracer designed to study glutamine uptake and metabolism. The aim of this first-in-human study was to evaluate the radiologic safety and biodistribution of 11C-glutamine for oncologic PET imaging. Methods: Nine patients with confirmed metastatic colorectal cancer underwent PET/CT imaging. Patients received 337.97 ± 44.08 MBq of 11C-glutamine. Dynamic PET acquisitions that were centered over the abdomen or thorax were initiated simultaneously with intravenous tracer administration. After the dynamic acquisition, a whole-body PET/CT scan was acquired. Volume-of-interest analyses were performed to obtain estimates of organ-based absorbed doses of radiation. Results:11C-glutamine was well tolerated in all patients, with no observed safety concerns. The organs with the highest radiation exposure included the bladder, pancreas, and liver. The estimated effective dose was 4.46E-03 ± 7.67E-04 mSv/MBq. Accumulation of 11C-glutamine was elevated and visualized in lung, brain, bone, and liver metastases, suggesting utility for cancer imaging. Conclusion: PET using 11C-glutamine appears safe for human use and allows noninvasive visualization of metastatic colon cancer lesions in multiple organs. Further studies are needed to elucidate its potential for other cancers and for monitoring response to treatment.


Subject(s)
Glutamine
10.
Nature ; 593(7858): 282-288, 2021 05.
Article in English | MEDLINE | ID: mdl-33828302

ABSTRACT

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , Nutrients/metabolism , Tumor Microenvironment , Animals , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Female , Glucose/metabolism , Glutamine/metabolism , Humans , Lipid Metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/immunology , Tumor Microenvironment/immunology
11.
J Clin Invest ; 131(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33320840

ABSTRACT

Rapidly proliferating tumor and immune cells need metabolic programs that support energy and biomass production. The amino acid glutamine is consumed by effector T cells and glutamine-addicted triple-negative breast cancer (TNBC) cells, suggesting that a metabolic competition for glutamine may exist within the tumor microenvironment, potentially serving as a therapeutic intervention strategy. Here, we report that there is an inverse correlation between glutamine metabolic genes and markers of T cell-mediated cytotoxicity in human basal-like breast cancer (BLBC) patient data sets, with increased glutamine metabolism and decreased T cell cytotoxicity associated with poor survival. We found that tumor cell-specific loss of glutaminase (GLS), a key enzyme for glutamine metabolism, improved antitumor T cell activation in both a spontaneous mouse TNBC model and orthotopic grafts. The glutamine transporter inhibitor V-9302 selectively blocked glutamine uptake by TNBC cells but not CD8+ T cells, driving synthesis of glutathione, a major cellular antioxidant, to improve CD8+ T cell effector function. We propose a "glutamine steal" scenario, in which cancer cells deprive tumor-infiltrating lymphocytes of needed glutamine, thus impairing antitumor immune responses. Therefore, tumor-selective targeting of glutamine metabolism may be a promising therapeutic strategy in TNBC.


Subject(s)
Antineoplastic Agents/pharmacology , CD8-Positive T-Lymphocytes/immunology , Carrier Proteins/antagonists & inhibitors , Glutamine/immunology , Immunity, Cellular , Lymphocytes, Tumor-Infiltrating/immunology , Triple Negative Breast Neoplasms/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Carrier Proteins/immunology , Carrier Proteins/metabolism , Cell Line, Tumor , Female , Glutamine/metabolism , Heterografts , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Transgenic , Neoplasm Transplantation , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
12.
Clin Cancer Res ; 26(22): 5914-5925, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32933996

ABSTRACT

PURPOSE: Pancreatic cancer is among the most aggressive malignancies and is rarely discovered early. However, pancreatic "incidentalomas," particularly cysts, are frequently identified in asymptomatic patients through anatomic imaging for unrelated causes. Accurate determination of the malignant potential of cystic lesions could lead to life-saving surgery or spare patients with indolent disease undue risk. Current risk assessment of pancreatic cysts requires invasive sampling, with attendant morbidity and sampling errors. Here, we sought to identify imaging biomarkers of high-risk pancreatic cancer precursor lesions. EXPERIMENTAL DESIGN: Translocator protein (TSPO) expression, which is associated with cholesterol metabolism, was evaluated in premalignant and pancreatic cancer lesions from human and genetically engineered mouse (GEM) tissues. In vivo imaging was performed with [18F]V-1008, a TSPO-targeted PET agent, in two GEM models. For image-guided surgery (IGS), V-1520, a TSPO ligand for near-IR optical imaging based upon the V-1008 pharmacophore, was developed and evaluated. RESULTS: TSPO was highly expressed in human and murine pancreatic cancer. Notably, TSPO expression was associated with high-grade, premalignant intraductal papillary mucinous neoplasms (IPMNs) and pancreatic intraepithelial neoplasia (PanIN) lesions. In GEM models, [18F]V-1008 exhibited robust uptake in early pancreatic cancer, detectable by PET. Furthermore, V-1520 localized to premalignant pancreatic lesions and advanced tumors enabling real-time IGS. CONCLUSIONS: We anticipate that combined TSPO PET/IGS represents a translational approach for precision pancreatic cancer care through discrimination of high-risk indeterminate lesions and actionable surgery.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Cholesterol/genetics , Pancreatic Neoplasms/genetics , Precancerous Conditions/genetics , Receptors, GABA/genetics , Animals , Animals, Genetically Modified/genetics , Carcinoma in Situ/diagnostic imaging , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Pancreas/diagnostic imaging , Pancreas/pathology , Pancreatic Cyst/diagnostic imaging , Pancreatic Cyst/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Precancerous Conditions/diagnostic imaging , Precancerous Conditions/pathology
13.
Tomography ; 6(3): 273-287, 2020 09.
Article in English | MEDLINE | ID: mdl-32879897

ABSTRACT

The National Institutes of Health's (National Cancer Institute) precision medicine initiative emphasizes the biological and molecular bases for cancer prevention and treatment. Importantly, it addresses the need for consistency in preclinical and clinical research. To overcome the translational gap in cancer treatment and prevention, the cancer research community has been transitioning toward using animal models that more fatefully recapitulate human tumor biology. There is a growing need to develop best practices in translational research, including imaging research, to better inform therapeutic choices and decision-making. Therefore, the National Cancer Institute has recently launched the Co-Clinical Imaging Research Resource Program (CIRP). Its overarching mission is to advance the practice of precision medicine by establishing consensus-based best practices for co-clinical imaging research by developing optimized state-of-the-art translational quantitative imaging methodologies to enable disease detection, risk stratification, and assessment/prediction of response to therapy. In this communication, we discuss our involvement in the CIRP, detailing key considerations including animal model selection, co-clinical study design, need for standardization of co-clinical instruments, and harmonization of preclinical and clinical quantitative imaging pipelines. An underlying emphasis in the program is to develop best practices toward reproducible, repeatable, and precise quantitative imaging biomarkers for use in translational cancer imaging and therapy. We will conclude with our thoughts on informatics needs to enable collaborative and open science research to advance precision medicine.


Subject(s)
Neoplasms , Precision Medicine , Animals , Diagnostic Imaging , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Proteomics , Translational Research, Biomedical , United States
14.
Transl Oncol ; 13(10): 100828, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32652471

ABSTRACT

Improving response to epidermal growth factor receptor (EGFR)-targeted therapies in patients with advanced wild-type (WT) RAS colorectal cancer (CRC) remains an unmet need. In this preclinical work, we evaluated a new therapeutic combination aimed at enhancing efficacy by targeting cancer cell metabolism in concert with EGFR. We hypothesized that combined blockade of glutamine metabolism and EGFR represents a promising treatment approach by targeting both the "fuel" and "signaling" components that these tumors need to survive. To explore this hypothesis, we combined CB-839, an inhibitor of glutaminase 1 (GLS1), the mitochondrial enzyme responsible for catalyzing conversion of glutamine to glutamate, with cetuximab, an EGFR-targeted monoclonal antibody in preclinical models of CRC. 2D and 3D in vitro assays were executed following treatment with either single agent or combination therapy. The combination of cetuximab with CB-839 resulted in reduced cell viability and demonstrated synergism in several cell lines. In vivo efficacy experiments were performed in cell-line xenograft models propagated in athymic nude mice. Tumor volumes were measured followed by immunohistochemical (IHC) analysis of proliferation (Ki67), mechanistic target of rapamycin (mTOR) signaling (pS6), and multiple mechanisms of cell death to annotate molecular determinants of response. In vivo, a significant reduction in tumor growth and reduced Ki67 and pS6 IHC staining were observed with combination therapy, which was accompanied by increased apoptosis and/or necrosis. The combination showed efficacy in cetuximab-sensitive as well as resistant models. In conclusion, this therapeutic combination represents a promising new precision medicine approach for patients with refractory metastatic WT RAS CRC.

15.
Mol Imaging Biol ; 22(5): 1370-1379, 2020 10.
Article in English | MEDLINE | ID: mdl-32632739

ABSTRACT

PURPOSE: Current PET radiotracer production models result in facility and operational costs that scale prohibitively with the number of tracers synthesized, particularly those made as a single dose-on-demand. Short of a paradigm shift in the technology and economics of radiotracer production, the impact of PET on precision medicine will be limited. Inexpensive, microfluidic radiochemistry platforms have the potential to significantly reduce costs associated with dose-on-demand production and expand the breadth of PET tracers accessible for molecular imaging. PROCEDURES: To produce a miniaturized dose-on-demand device for [68Ga]Ga-PSMA-11 production, a microfluidic chip was assembled in polydimethylsiloxane (PDMS), combining all components of tracer production in an integrated, compact, and easily utilized platform. On-chip radionuclide concentration, as well as radionuclide and precursor starting material mixing and reaction were incorporated. The radionuclide was sourced from a standard, commercially available 68Ge/68Ga generator. Optimal reaction conditions were determined, which included precursor concentration (5 µg/mL), temperature (95 °C), and reaction time (1 min). RESULTS: The total trapping efficiency of combined on-chip SCX and SAX columns was greater than 70 % and could be accomplished in ~ 12 min. Under optimized conditions, [68Ga]Ga-PSMA-11 could be reliably synthesized starting from a complete generator elution (1100 MBq [29.7 mCi]) in ~ 12 min, with an average radiochemical yield of 70 %, radiochemical purity > 99 %, and specific activity > 740 MBq/µg (20 mCi/µg). Quality control testing demonstrated that tracer produced using this platform met or exceeded all typical FDA requirements for human use. CONCLUSIONS: A simple, low-cost, dose-on-demand radiosynthesis strategy, such as the chip presented here, represents an opportunity to reduce the financial barriers associated with PET imaging. While this study focused on a device for [68Ga]Ga-PSMA-11, the technology is also applicable to a wide range of other tracers where low-cost, automated, dose-on-demand production is highly desirable.


Subject(s)
Costs and Cost Analysis , Gallium Isotopes/chemical synthesis , Lab-On-A-Chip Devices/economics , Chromatography, High Pressure Liquid , Gallium Isotopes/chemistry , Gallium Radioisotopes/chemistry , Hydrogen-Ion Concentration , Quality Control , Temperature , Time Factors
16.
Mol Imaging Biol ; 22(3): 463-475, 2020 06.
Article in English | MEDLINE | ID: mdl-31485889

ABSTRACT

The current utilization of positron emission tomography (PET) imaging is limited due to the high costs associated with production facility start-up and operations; subsequently, there has been a movement towards microfluidic synthesis of radiolabeled imaging pharmaceuticals (tracers). In this review, we summarize the current status of microfluidic radiosynthesis units for producing fluorine-18 labeled PET imaging tracers, including a discussion of the relative strengths and weaknesses of such devices. In addition, we provide a brief overview of the radiotracers that have been produced using microfluidic devices to date. Finally, we discuss the prospects for the future of this field, including the potential of newly envisioned devices developed that may allow operators to easily synthesize specialized tracers for individual patient doses.


Subject(s)
Fluorine Radioisotopes/chemistry , Isotope Labeling/methods , Microfluidics/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Animals , Humans , Microfluidics/instrumentation
17.
ACS Omega ; 4(5): 9251-9261, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31172046

ABSTRACT

In vivo targeting and visualization of cyclooxygenase-1 (COX-1) using multimodal positron emission tomography/computed tomography imaging represents a unique opportunity for early detection and/or therapeutic evaluation of ovarian cancer because overexpression of COX-1 has been characterized as a pathologic hallmark of the initiation and progression of this disease. The furanone core is a common building block of many synthetic and natural products that exhibit a wide range of biological activities. We hypothesize that furanone-based COX-1 inhibitors can be designed as imaging agents for the early detection, delineation of tumor margin, and evaluation of treatment response of ovarian cancer. We report the discovery of 3-(4-fluorophenyl)-5,5-dimethyl-4-(p-tolyl)furan-2(5H)-one (FDF), a furanone-based novel COX-1-selective inhibitor that exhibits adequate in vivo stability, plasma half-life, and pharmacokinetic properties for use as an imaging agent. We describe a novel synthetic scheme in which a Lewis acid-catalyzed nucleophilic aromatic deiodo[18F]fluorination reaction is utilized for the radiosynthesis of [18F]FDF. [18F]FDF binds efficiently to COX-1 in vivo and enables sensitive detection of ovarian cancer in subcutaneous and peritoneal xenograft models in mice. These results provide the proof of principle for COX-1-targeted imaging of ovarian cancer and identify [18F]FDF as a promising lead compound for further preclinical and clinical development.

18.
Mol Imaging Biol ; 21(1): 113-121, 2019 02.
Article in English | MEDLINE | ID: mdl-29869061

ABSTRACT

PURPOSE: There is an urgent need for the development of novel positron emission tomography (PET) tracers for glioma imaging. In this study, we developed a novel PET probe ([18F]VUIIS1018A) by targeting translocator protein (TSPO), an imaging biomarker for glioma. The purpose of this preclinical study was to evaluate this novel TSPO probe for glioma imaging. PROCEDURES: In this study, we synthesized [19F]VUIIS1018A and the precursor for radiosynthesis of [18F]VUIIS1018A. TSPO binding affinity was confirmed using a radioligand competitive binding assay in C6 glioma cell lysate. Further, dynamic imaging studies were performed in rats using a microPET system. These studies include displacement and blocking studies for ligand reversibility and specificity evaluation, and compartment modeling of PET data for pharmacokinetic parameter measurement using metabolite-corrected arterial input functions and PMOD. RESULTS: Compared to previously reported TSPO tracers including [18F]VUIIS1008 and [18F]DPA-714, the novel tracer [18F]VUIIS1018A demonstrated higher binding affinity and BPND. Pretreatment with the cold analog [19F]VUIIS1018A could partially block tumor accumulation of this novel tracer. Further, compartment modeling of this novel tracer also exhibited a greater tumor-to-background ratio, a higher tumor binding potential and a lower brain binding potential when compared with other TSPO probes, such as [18F]DPA-714 and [18F]VUIIS1008. CONCLUSIONS: These studies illustrate that [18F]VUIIS1018A can serve as a promising TSPO PET tracer for glioma imaging and potentially imaging of other solid tumors.


Subject(s)
Brain Neoplasms/diagnosis , Fluorine Radioisotopes/pharmacokinetics , Glioma/diagnosis , Positron-Emission Tomography/methods , Pyrazoles/pharmacokinetics , Pyrimidines/pharmacokinetics , Animals , Brain Neoplasms/pathology , Carrier Proteins/agonists , Carrier Proteins/metabolism , Disease Progression , Drug Evaluation, Preclinical , Glioma/pathology , Ligands , Magnetic Resonance Imaging , Male , Rats , Rats, Wistar , Receptors, GABA-A/metabolism , Tumor Cells, Cultured
19.
Transl Psychiatry ; 8(1): 269, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30531858

ABSTRACT

Impulsivity is a transdiagnostic feature of a range of externalizing psychiatric disorders. Preclinical work links reduced ventral striatal dopamine transporter (DAT) availability with heightened impulsivity and novelty seeking. However, there is a lack of human data investigating the relationship between DAT availability, particularly in subregions of the striatum, and the personality traits of impulsivity and novelty seeking. Here we collected PET measures of DAT availability (BPND) using the tracer 18F-FE-PE2I in 47 healthy adult subjects and examined relations between BPND in striatum, including its subregions: caudate, putamen, and ventral striatum (VS), and trait impulsivity (Barratt Impulsiveness Scale: BIS-11) and novelty seeking (Tridimensional Personality Questionnaire: TPQ-NS), controlling for age and sex. DAT BPND in each striatal subregion showed nominal negative associations with total BIS-11 but not TPQ-NS. At the subscale level, VS DAT BPND was significantly associated with BIS-11 motor impulsivity (e.g., taking actions without thinking) after correction for multiple comparisons. VS DAT BPND explained 13.2% of the variance in motor impulsivity. Our data demonstrate that DAT availability in VS is negatively related to impulsivity and suggest a particular influence of DAT regulation of dopamine signaling in VS on acting without deliberation (BIS motor impulsivity). While needing replication, these data converge with models of ventral striatal functions that emphasize its role as a key interface linking motivation to action.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Exploratory Behavior/physiology , Impulsive Behavior/physiology , Personality , Ventral Striatum/metabolism , Adult , Aged , Female , Fluorodeoxyglucose F18 , Humans , Male , Middle Aged , Personality Inventory , Positron-Emission Tomography , Young Adult
20.
Nucl Med Biol ; 67: 10-14, 2018 12.
Article in English | MEDLINE | ID: mdl-30359787

ABSTRACT

INTRODUCTION: The natural amino acid l-Glutamine (Gln) is essential for both cell growth and proliferation. In addition to glucose, cancer cells utilize Gln as a carbon source for ATP production, biosynthesis, and as a defense against reactive oxygen species. The utilization of [11C]Gln has been previously reported as a biomarker for tissues with an elevated demand for Gln, however, the previous reports for the preparation of [11C]Gln were found to be lacking several crucial aspects necessary for transition to human production. Namely, the presence of unreacted precursor and the use of non-commercialized, custom built, reaction platforms. Herein, we report the development and utilization of methodology for the automated production of [11C]Gln that meets institutional criteria for human use. METHODS: The preparation of [11C]Gln was carried out on the GE FX2N platform. Briefly, after trapping of [11C]HCN with a solution of CsHCO3 in DMF, the [11C]CsCN was reacted with a commercially available precursor. This intermediate was then purified by HPLC and deprotected/hydrolyzed under acidic conditions. Following pH adjustment, the product was filtered to give the desired [11C]Gln as a sterile injectable. The resulting product was then analyzed for quality assurance. RESULTS: Automated production by this method reliably provides over 3.7 GBq (100 mCi) of [11C]Gln. The resulting final drug product was found to have a >99% radiochemical purity, <5% of D-Gln present, no detectable impurities, and the total preparation time was roughly 45 min from the end-of-bombardment. CONCLUSIONS: A fast, reliable and efficient automated radiosynthesis was developed using a commercially available module. Purifications used throughout allow for both a radiochemically and chemically pure final product solution of [11C]Gln.


Subject(s)
Carbon Radioisotopes/chemistry , Glutamine/chemistry , Radiochemistry/methods , Automation , Chemistry Techniques, Synthetic , Radioactive Tracers
SELECTION OF CITATIONS
SEARCH DETAIL
...