Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; : e0038624, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864651

ABSTRACT

We report 12 metagenome-assembled genomes (MAGS) of a bioreactor community of acid-tolerant nitrifying bacteria. The MAGS include autotrophs in the Nitrospira genus and heterotrophs in the Xanthomonadales, Ktedonobacterales, Cytophagales, Burkholderiales, and Hyphomicrobiales. These taxonomic and genomic data provide insights into the core community members required for nitrification at low pH.

2.
Agrosyst Geosci Environ ; 6(3): 1-18, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-38268614

ABSTRACT

To provide recommendations for establishment of plants on low-pH Formosa Mine tailings, two greenhouse experiments were conducted to evaluate the use of remedial amendments to improve the survival and growth of Douglas fir (Pseudotsuga menziesii) seedlings. A preliminary experiment indicated that 1% lime (by weight) raised tailings pH, permitting seedling survival. However, high rates of biosolid application (BS; 2% by weight) added to supply nutrients were phytotoxic when added with lime. A gasified conifer biochar (BC) added to tailings at 1%, 2.5%, or 5% (by weight), along with lime and BS, caused an additional increase in pH, decreased electrical conductivity (EC), and tended to increase the survival of Douglas fir. The addition of a locally sourced microbial inoculum (LSM) did not affect survival. A subsequent experiment expanded our experimental design by testing multiple levels of amendments that included lime (0.5% and 1% by weight), three application rates (0.2%, 0.5%, and 2%) of two nutrient sources (BS or mineral fertilizer), BC (0% and 2.5%), and with or without LSM. There were many interactions among amendments. In general, Douglas fir survival was enhanced when lime and BC were added. These experiments suggest that amending with lime, a nutrient source, and BC would enhance revegetation on low-pH, metal-contaminated mine tailings.

3.
Biochemistry ; 61(19): 2159-2164, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36126313

ABSTRACT

4-Formylaminooxyvinylglycine (FVG) is an herbicidal and antibacterial nonproteinogenic amino acid produced by several strains of the Pseudomonas fluorescens species complex. It contains a unique vinyl alkoxyamine moiety with an O-N bond, and its biosynthetic origin remains unknown. Here, we show that the gvg cluster from P. fluorescens WH6 is responsible for the biosynthesis of FVG and two additional O-N bond-containing oxyvinylglycines, guanidinooxyvinylglycine and aminooxyvinylglycine. Feeding studies in the producing bacteria indicate that these compounds originate from homoserine. We identify a formyltransferase gvgI that is required for the production of FVG and characterize the activity of this enzyme in vitro toward amino acids with a side chain amine. Sequence similarity network analysis reveals that GvgI and homologues make up a distinct group from the main classes of formyltransferases.


Subject(s)
Hydroxymethyl and Formyl Transferases , Pseudomonas fluorescens , Amines/metabolism , Amino Acids/metabolism , Anti-Bacterial Agents/metabolism , Glycine , Homoserine , Hydroxymethyl and Formyl Transferases/metabolism
4.
Microorganisms ; 9(4)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807194

ABSTRACT

Pseudomonas fluorescens WH6 produces the non-proteinogenic amino acid 4-formylaminooxyvinylglycine (FVG), a secondary metabolite with antibacterial and pre-emergent herbicidal activities. The gvg operon necessary for FVG production encodes eight required genes: one regulatory (gvgR), two of unknown functional potential (gvgA and C), three with putative biosynthetic function (gvgF, H, and I), and two small ORFs (gvgB and G). To gain insight into the role of GvgA and C in FVG production, we compared the transcriptome of knockout (KO) mutants of gvgR, A, and C to wild type (WT) to test two hypotheses: (1) GvgA and GvgC play a regulatory role in FVG production and (2) non-gvg cluster genes are regulated by GvgA and GvgC. Our analyses show that, collectively, 687 genes, including the gvg operon, are differentially expressed in all KO strains versus WT, representing >10% of the genome. Fifty-one percent of these genes were similarly regulated in all KO strains with GvgC having the greatest number of uniquely regulated genes. Additional transcriptome data suggest cluster regulation through feedback of a cluster product. We also discovered that FVG biosynthesis is regulated by L-glu, L-asp, L-gln, and L-asn and that resources are reallocated in KO strains to increase phenotypes involved in rhizocompetence including motility, biofilm formation, and denitrification. Altogether, differential transcriptome analyses of mutants suggest that regulation of the cluster is multifaceted and the absence of FVG production or its downregulation can dramatically shift the lifestyle of WH6.

5.
PLoS One ; 16(4): e0247348, 2021.
Article in English | MEDLINE | ID: mdl-33891610

ABSTRACT

The biological herbicide and antibiotic 4-formylaminooxyvinylglycine (FVG) was originally isolated from several rhizosphere-associated strains of Pseudomonas fluorescens. Biosynthesis of FVG is dependent on the gvg biosynthetic gene cluster in P. fluorescens. In this investigation, we used comparative genomics to identify strains with the genetic potential to produce FVG due to presence of a gvg gene cluster. These strains primarily belong to two groups of Pseudomonas, P. fluorescens and P. syringae, however, a few strains with the gvg cluster were found outside of Pseudomonas. Mass spectrometry confirmed that all tested strains of the P. fluorescens species group produced FVG. However, P. syringae strains did not produce FVG under standard conditions. Several lines of evidence regarding the transmission of the gvg cluster including a robust phylogenetic analysis suggest that it was introduced multiple times through horizontal gene transfer within the Pseudomonas lineage as well as in select lineages of Thiomonas, Burkholderia and Pantoea. Together, these data broaden our understanding of the evolution and diversity of FVG biosynthesis. In the course of this investigation, additional gene clusters containing only a subset of the genes required to produce FVG were identified in a broad range of bacteria, including many non-pseudomonads.


Subject(s)
Biosynthetic Pathways , Glycine/analogs & derivatives , Pseudomonas/metabolism , Anti-Bacterial Agents/metabolism , Genes, Bacterial , Glycine/genetics , Glycine/metabolism , Herbicides/metabolism , Humans , Multigene Family , Phylogeny , Pseudomonas/genetics , Pseudomonas Infections/microbiology
6.
Appl Soil Ecol ; 165: 1-12, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-36034161

ABSTRACT

Abandoned mine lands present persistent environmental challenges to ecosystems and economies; reclamation an important step for overcoming these challenges. Phytostabilization is an elegant and cost-effective reclamation strategy, however, establishing plants on severely degraded soils is problematic, often requiring soil amendment additions. We evaluated whether amendment mixtures composed of lime, biochar, biosolids, and locally effective microbes (LEM) could alleviate the constraints that hinder phytostabilization success. We hypothesized that 1) plants grown in tailings amended with lime, biochar, and biosolids (LBB) would establish faster and grow larger than plants grown in tailings amended with lime only, and 2) the LEM source would influence microbial community function and structure in amended mine tailings. We conducted a greenhouse study that simulated in situ conditions to measure the influence of LBB-LEM amendment blends on plant growth, plant nutrients, metal concentrations, microbial function, and microbial community structure. Blue wildrye [Elymus glaucus Buckley ssp. Jepsonii (Burtt Davy) Gould] was grown in tailings collected from the Formosa mine site amended with various combinations of LBB-LEM. The above and below ground biomass of plants grown in mine tailings amended with LBB was 3 to 4 times larger than the biomass of plants grown in tailings amended only with lime. Although the LEM addition did not influence immediate plant growth, it did affect nutrient content and altered the rhizosphere community membership. As such, it is not yet clear if LEM-driven alterations in microbial membership will advance mine reclamation strategies by improving long-term growth.

7.
J Bacteriol ; 201(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30745372

ABSTRACT

Erwinia amylovora is the causal agent of fire blight of apple and pear trees. Several bacteria have been shown to produce antibiotics that antagonize E. amylovora, including pantocins, herbicolins, dapdiamides, and the vinylglycines, 4-formylaminooxyvinylglycine (FVG) and 4-aminoethoxyvinylglycine (AVG). Pantoea ananatis BRT175 was previously shown to exhibit antibiotic activity against E. amylovora via the production of Pantoea natural product 1 (PNP-1), later shown to be FVG; however, exposure of E. amylovora to FVG results in spontaneously resistant mutants. To identify the mechanism of resistance, we used genome variant analysis on spontaneous FVG-resistant mutants of E. amylovora and identified null mutations in the l-asparagine permease gene ansP Heterologous expression of ansP in normally resistant Escherichia coli was sufficient to impart FVG susceptibility, suggesting that FVG is imported through this permease. Because FVG and AVG are structurally similar, we hypothesized that resistance to AVG would also be conferred through inactivation of ansP; however, ansP mutants were not resistant to AVG. We found that spontaneously resistant Ea321 mutants also arise in the presence of AVG, with whole-genome variant analysis revealing that resistance was due to inactivation of the arginine ABC transporter permease subunit gene artQ Heterologous expression of the predicted lysE-like transporter encoded within the Pantoea ananatis BRT175 FVG biosynthetic cluster, which is likely responsible for antibiotic export, was sufficient to confer resistance to both FVG and AVG. This work highlights the important roles of amino acid transporters in antibiotic import into bacteria and the potential utility of antimicrobial amino acid analogs as antibiotics.IMPORTANCE The related antibiotics formylaminooxyvinylglycine (FVG) and aminoethoxyvinylglycine (AVG) have been shown to have activity against the fire blight pathogen Erwinia amylovora; however, E. amylovora can develop spontaneous resistance to these antibiotics. By comparing the genomes of mutants to those of the wild type, we found that inactivation of the l-asparagine transporter conferred resistance to FVG, while inactivation of the l-arginine transporter conferred resistance to AVG. We also show that the transporter encoded by the FVG biosynthetic cluster can confer resistance to both FVG and AVG. Our work indicates the important role that amino acid transporters play in the import of antibiotics and highlights the possible utility in designer antibiotics that enter the bacterial cell through amino acid transporters.


Subject(s)
Amino Acid Transport Systems/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Erwinia amylovora/drug effects , Erwinia amylovora/enzymology , Glycine/analogs & derivatives , DNA Mutational Analysis , Drug Resistance, Bacterial , Glycine/pharmacology , Mutation
8.
PLoS One ; 13(7): e0200481, 2018.
Article in English | MEDLINE | ID: mdl-29990341

ABSTRACT

The oxyvinylglycine 4-formylaminooxyvinylglycine (FVG) arrests the germination of weedy grasses and inhibits the growth of the bacterial plant pathogen Erwinia amylovora. Both biological and analytical methods have previously been used to detect the presence of FVG in crude and extracted culture filtrates of several Pseudomonas fluorescens strains. Although a combination of these techniques is adequate to detect FVG, none is amenable to high-throughput analysis. Likewise, filtrates often contain complex metabolite mixtures that prevent the detection of FVG using established chromatographic techniques. Here, we report the development of a new method that directly detects FVG in crude filtrates using laser ablation electrospray ionization-mass spectrometry (LAESI-MS). This approach overcomes limitations with our existing methodology and allows for the rapid analysis of complex crude culture filtrates. To validate the utility of the LAESI-MS method, we examined crude filtrates from Pantoea ananatis BRT175 and found that this strain also produces FVG. These findings are consistent with the antimicrobial activity of P. ananatis BRT175 and indicate that the spectrum of bacteria that produce FVG stretches beyond rhizosphere-associated Pseudomonas fluorescens.


Subject(s)
Glycine/analogs & derivatives , Pantoea/chemistry , Plant Weeds/drug effects , Pseudomonas fluorescens/chemistry , Anti-Bacterial Agents/pharmacology , Chromatography, Thin Layer , Erwinia amylovora/drug effects , Genotype , Glycine/analysis , Laser Therapy , Mutation , Rhizosphere , Spectrometry, Mass, Electrospray Ionization
9.
Genome Announc ; 5(18)2017 May 04.
Article in English | MEDLINE | ID: mdl-28473382

ABSTRACT

Vinylglycines are nonproteinogenic amino acids that inhibit amino acid metabolism and ethylene production. Here, we report the draft genome sequences of seven isolates of Pseudomonas that produce 4-formylaminooxyvinylglycine, a compound known to inhibit the germination of grasses and the growth of specific plant-pathogenic bacteria.

10.
Microbiology (Reading) ; 163(2): 207-217, 2017 02.
Article in English | MEDLINE | ID: mdl-28270265

ABSTRACT

Rhizosphere-associated Pseudomonas fluorescens WH6 produces the germination-arrest factor 4-formylaminooxyvinylglycine (FVG). FVG has previously been shown to both arrest the germination of weedy grasses and inhibit the growth of the bacterial plant pathogen Erwinia amylovora. Very little is known about the mechanism by which FVG is produced. Although a previous study identified a region of the genome that may be involved in FVG biosynthesis, it has not yet been determined which genes within that region are sufficient and necessary for FVG production. In the current study, we explored the role of each of the putative genes encoded in that region by constructing deletion mutations. Mutant strains were assayed for their ability to produce FVG with a combination of biological assays and TLC analyses. This work defined the core FVG biosynthetic gene cluster and revealed several interesting characteristics of FVG production. We determined that FVG biosynthesis requires two small ORFs of less than 150 nucleotides and that multiple transporters have overlapping but distinct functionality. In addition, two genes in the centre of the biosynthetic gene cluster are not required for FVG production, suggesting that additional products may be produced from the cluster. Transcriptional analysis indicated that at least three active promoters play a role in the expression of genes within this cluster. The results of this study enrich our knowledge regarding the diversity of mechanisms by which bacteria produce non-proteinogenic amino acids like vinylglycines.


Subject(s)
Gene Expression Regulation, Bacterial/genetics , Glycine/analogs & derivatives , Multigene Family/genetics , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism , Erwinia amylovora/growth & development , Germination/physiology , Glycine/biosynthesis , Poaceae/microbiology , Promoter Regions, Genetic/genetics , Rhizosphere , Sequence Deletion
11.
Mol Plant Microbe Interact ; 28(10): 1082-90, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26057389

ABSTRACT

The necrotrophic fungus Pyrenophora tritici-repentis is responsible for the disease tan spot of wheat. Ptr ToxB (ToxB), a proteinaceous host-selective toxin, is one of the effectors secreted by P. tritici-repentis. ToxB induces chlorosis in toxin-sensitive wheat cultivars and displays characteristics common to apoplastic effectors. We addressed the hypothesis that ToxB exerts its activity extracellularly. Our data indicate that hydraulic pressure applied in the apoplast following ToxB infiltration can displace ToxB-induced symptoms. In addition, treatment with a proteolytic cocktail following toxin infiltration results in reduction of symptom development and indicates that ToxB requires at least 8 h in planta to induce maximum symptom development. In vitro assays demonstrate that apoplastic fluids extracted from toxin-sensitive and -insensitive wheat cultivars cannot degrade ToxB. Additionally, ToxB can be reisolated from apoplastic fluid after toxin infiltration. Furthermore, localization studies of fluorescently labeled ToxB indicate that the toxin remains in the apoplast in toxin-sensitive and -insensitive wheat cultivars. Our findings support the hypothesis that ToxB acts as an extracellular effector.


Subject(s)
Fungal Proteins/metabolism , Host-Pathogen Interactions , Plant Diseases/microbiology , Triticum/metabolism , Extracellular Space/metabolism , Mycotoxins/metabolism , Plant Leaves/cytology , Plant Leaves/metabolism , Plant Leaves/microbiology , Pressure , Protein Transport , Triticum/cytology , Triticum/microbiology
12.
PLoS One ; 10(4): e0123548, 2015.
Article in English | MEDLINE | ID: mdl-25845019

ABSTRACT

Pyrenophora tritici-repentis, the causal agent of tan spot disease of wheat, mediates disease by the production of host-selective toxins (HST). The known toxins are recognized in an 'inverse' gene-for-gene manner, where each is perceived by the product of a unique locus in the host and recognition leads to disease susceptibility. Given the importance of HSTs in disease development, we would predict that the loss of any of these major pathogenicity factors would result in reduced virulence and disease development. However, after either deletion of the gene encoding the HST ToxA or, reciprocally, heterologous expression of ToxA in a race that does not normally produce the toxin followed by inoculation of ToxA-sensitive and insensitive wheat cultivars, we demonstrate that ToxA symptom development can be epistatic to other HST-induced symptoms. ToxA epistasis on certain ToxA-sensitive wheat cultivars leads to genotype-specific increases in total leaf area affected by disease. These data indicate a complex interplay between host responses to HSTs in some genotypes and underscore the challenge of identifying additional HSTs whose activity may be masked by other toxins. Also, through mycelial staining, we acquire preliminary evidence that ToxA may provide additional benefits to fungal growth in planta in the absence of its cognate recognition partner in the host.


Subject(s)
Ascomycota/physiology , Epistasis, Genetic , Fungal Proteins/genetics , Mycotoxins/genetics , Plant Diseases/microbiology , Triticum/microbiology , Ascomycota/genetics , Ascomycota/pathogenicity , Fungal Proteins/metabolism , Gene Deletion , Gene Knockout Techniques , Host-Pathogen Interactions , Mycotoxins/metabolism , Plant Leaves/microbiology , Triticum/genetics
13.
J Biol Chem ; 289(37): 25946-56, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25063993

ABSTRACT

Pyrenophora tritici-repentis Ptr ToxB (ToxB) is a proteinaceous host-selective toxin produced by Pyrenophora tritici-repentis (P. tritici-repentis), a plant pathogenic fungus that causes the disease tan spot of wheat. One feature that distinguishes ToxB from other host-selective toxins is that it has naturally occurring homologs in non-pathogenic P. tritici-repentis isolates that lack toxic activity. There are no high-resolution structures for any of the ToxB homologs, or for any protein with >30% sequence identity, and therefore what underlies activity remains an open question. Here, we present the NMR structures of ToxB and its inactive homolog Ptr toxb. Both proteins adopt a ß-sandwich fold comprising three strands in each half that are bridged together by two disulfide bonds. The inactive toxb, however, shows higher flexibility localized to the sequence-divergent ß-sandwich half. The absence of toxic activity is attributed to a more open structure in the vicinity of one disulfide bond, higher flexibility, and residue differences in an exposed loop that likely impacts interaction with putative targets. We propose that activity is regulated by perturbations in a putative active site loop and changes in dynamics distant from the site of activity. Interestingly, the new structures identify AvrPiz-t, a secreted avirulence protein produced by the rice blast fungus, as a structural homolog to ToxB. This homology suggests that fungal proteins involved in either disease susceptibility such as ToxB or resistance such as AvrPiz-t may have a common evolutionary origin.


Subject(s)
Fungal Proteins/chemistry , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Triticum/microbiology , Crystallography, X-Ray , Evolution, Molecular , Fungal Proteins/metabolism , Fungal Proteins/toxicity , Magnetic Resonance Spectroscopy , Protein Folding , Protein Structure, Secondary , Solutions/chemistry , Triticum/genetics
14.
PLoS Genet ; 9(1): e1003233, 2013.
Article in English | MEDLINE | ID: mdl-23357949

ABSTRACT

The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.


Subject(s)
Ascomycota/genetics , Peptide Synthases/genetics , Plant Diseases , Polyketide Synthases/genetics , Polymorphism, Single Nucleotide/genetics , Ascomycota/pathogenicity , Base Sequence , Evolution, Molecular , Genetic Variation , Genome, Fungal , Phylogeny , Plant Diseases/genetics , Plant Diseases/parasitology , Virulence/genetics
15.
G3 (Bethesda) ; 3(1): 41-63, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23316438

ABSTRACT

Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.


Subject(s)
Ascomycota/genetics , Ascomycota/pathogenicity , Evolution, Molecular , Genetic Variation , Genome, Fungal/genetics , Mycotoxins/genetics , Triticum/microbiology , Base Sequence , Chromosome Mapping , Cytogenetic Analysis , DNA Primers/genetics , DNA Transposable Elements/genetics , Gene Duplication/genetics , Genomics , Likelihood Functions , Models, Genetic , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
16.
PLoS One ; 7(7): e40240, 2012.
Article in English | MEDLINE | ID: mdl-22792250

ABSTRACT

Pyrenophora tritici-repentis (Ptr), a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs) necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA) and Ptr ToxB (ToxB), are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.


Subject(s)
Ascomycota/pathogenicity , Mycotoxins/pharmacology , Plant Diseases/genetics , Triticum/genetics , Triticum/microbiology , Cell Death/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Metabolic Networks and Pathways/drug effects , Multigene Family/drug effects , Oxidative Stress/genetics , Photosynthesis/drug effects , Plant Diseases/microbiology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
17.
New Phytol ; 187(4): 911-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20646221

ABSTRACT

Host-selective toxins (HSTs) are effectors produced by some necrotrophic pathogenic fungi that typically confer the ability to cause disease. Often, diseases caused by pathogens that produce HSTs follow an inverse gene-for-gene model where toxin production is required for the ability to cause disease and a single locus in the host is responsible for toxin sensitivity and disease susceptibility. Pyrenophora tritici-repentis represents an ideal pathogen for studying the biological significance of such inverse gene-for-gene interactions, because it displays a complex race structure based on its production of multiple HSTs. Ptr ToxA and Ptr ToxB are two proteinaceous HSTs produced by P. tritici-repentis that are structurally unrelated and appear to evoke different host responses, yet each toxin confers the ability to cause disease. This review will summarize the current knowledge of how these two dissimilar HSTs display distinct modes of action, yet each confers pathogenicity to P. tritici-repentis.


Subject(s)
Ascomycota/pathogenicity , Genes, Fungal/physiology , Host-Pathogen Interactions/genetics , Mycotoxins , Plant Diseases/microbiology , Triticum/microbiology , Ascomycota/genetics , Fungal Proteins/genetics , Fungal Proteins/physiology
18.
New Phytol ; 187(4): 1034-1047, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20646220

ABSTRACT

*ToxA, a host-selective toxin of wheat, can be detected within ToxA-sensitive mesophyll cells, where it localizes to chloroplasts and induces necrosis. Interaction of ToxA with the chloroplast-localized protein ToxABP1 has been implicated in this process. Therefore, we hypothesized that silencing of ToxABP1 in wheat would lead to a necrotic phenotype. Also, because ToxABP1 is highly conserved in plants, internal expression of ToxA in plants that do not normally internalize ToxA should result in cell death. *Reduction of ToxABP1 expression was achieved using Barley stripe mosaic virus (BSMV)-mediated, viral-induced gene silencing. The BSMV system was modified for use as an internal expression vector for ToxA in monocots. Agrobacterium-mediated expression of ToxA in a dicot (tobacco-Nicotiana benthamiana) was also performed. *Viral-induced gene silencing of ToxABP1 partially recapitulates the phenotype of ToxA treatment and wheat plants with reduced ToxABP1 also have reduced sensitivity to ToxA. When ToxA is expressed in ToxA-insensitive wheat, barley (Hordeum vulgare) and tobacco, cell death ensues. *ToxA accumulation in any chloroplast-containing cell is likely to result in cell death. Our data indicate that the ToxA-ToxABP1 interaction alters ToxABP1 function. This interaction is a critical, although not exclusive, component of the ToxA-induced cell death cascade.


Subject(s)
Ascomycota/pathogenicity , Fungal Proteins/metabolism , Genes, Fungal , Genes, Plant , Mycotoxins/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Ascomycota/genetics , Cell Death , Fungal Proteins/genetics , Gene Expression , Gene Silencing , Hordeum/genetics , Hordeum/metabolism , Host-Pathogen Interactions/physiology , Mosaic Viruses , Mycotoxins/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Nicotiana/genetics , Nicotiana/metabolism , Triticum/genetics , Triticum/metabolism
19.
Mol Plant ; 2(5): 1067-83, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19825681

ABSTRACT

To obtain greater insight into the molecular events underlying plant disease susceptibility, we studied transcriptome changes induced by a host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA (ToxA), on its host plant, wheat. Transcriptional profiling of ToxA-treated leaves of a ToxA-sensitive wheat cultivar was performed using the GeneChip Wheat Genome Array. An improved and up-to-date annotation of the wheat microarray was generated and a new tool for array data analysis (BRAT) was developed, and both are available for public use via a web-based interface. Our data indicate that massive transcriptional reprogramming occurs due to ToxA treatment, including cellular responses typically associated with defense. In addition, this study supports previous results indicating that ToxA-induced cell death is triggered by impairment of the photosynthetic machinery and accumulation of reactive oxygen species. Based on results of this study, we propose that ToxA acts as both an elicitor and a virulence factor.


Subject(s)
Fungal Proteins/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Mycotoxins/pharmacology , Triticum/drug effects , Triticum/metabolism , Gene Expression Regulation, Plant/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Oligonucleotide Array Sequence Analysis , Oxidative Stress/drug effects , Oxidative Stress/genetics , Reverse Transcriptase Polymerase Chain Reaction , Triticum/genetics
20.
Mol Plant Microbe Interact ; 22(6): 665-76, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19445591

ABSTRACT

Ptr ToxA (ToxA) is a proteinaceous necrotizing host-selective toxin produced by Pyrenophora tritici-repentis, a fungal pathogen of wheat (Triticum aestivum). In this study, we have found that treatment of ToxA-sensitive wheat leaves with ToxA leads to a light-dependent accumulation of reactive oxygen species (ROS) that correlates with the onset of necrosis. Furthermore, the accumulation of ROS and necrosis could be inhibited by the antioxidant N-acetyl cysteine, providing further evidence that ROS production is required for necrosis. Microscopic evaluation of ToxA-treated whole-leaf tissue indicated that ROS accumulation occurs in the chloroplasts. Analysis of total protein extracts from ToxA-treated leaves showed a light-dependent reduction of the chloroplast protein RuBisCo. In addition, Blue native-gel electrophoresis followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed that ToxA induces changes in photosystem I (PSI) and photosystem II (PSII) in the absence of light, and therefore, the absence of ROS. When ToxA-treated leaves were exposed to light, all proteins in both PSI and PSII were extremely reduced. We propose that ToxA induces alterations in PSI and PSII affecting photosynthetic electron transport, which subsequently leads to ROS accumulation and cell death when plants are exposed to light.


Subject(s)
Ascomycota/pathogenicity , Mycotoxins/pharmacology , Reactive Oxygen Species/metabolism , Triticum/microbiology , Acetylcysteine/pharmacology , Ascomycota/metabolism , Cell Death/drug effects , Chloroplasts/drug effects , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Free Radical Scavengers/pharmacology , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plant Proteins/metabolism , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...