Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 44(3): 666-689, 2024 03.
Article in English | MEDLINE | ID: mdl-38299356

ABSTRACT

BACKGROUND: Endothelial cells are constantly exposed to mechanical forces in the form of fluid shear stress, extracellular stiffness, and cyclic strain. The mechanoresponsive activity of YAP (Yes-associated protein) and its role in vascular development are well described; however, whether changes to transcription or epigenetic regulation of YAP are involved in these processes remains unanswered. Furthermore, how mechanical forces are transduced to the nucleus to drive transcriptional reprogramming in endothelial cells is poorly understood. The YAP target gene, AmotL2 (angiomotin-like 2), is a junctional mechanotransducer that connects cell-cell junctions to the nuclear membrane via the actin cytoskeleton. METHODS: We applied mechanical manipulations including shear flow, stretching, and substrate stiffness to endothelial cells to investigate the role of mechanical forces in modulating YAP transcription. Using in vitro and in vivo endothelial depletion of AmotL2, we assess nuclear morphology, chromatin organization (using transposase-accessible chromatin sequencing), and whole-mount immunofluorescent staining of the aorta to determine the regulation and functionality of YAP. Finally, we use genetic and chemical inhibition to uncouple the nuclear-cytoskeletal connection to investigate the role of this pathway on YAP transcription. RESULTS: Our results reveal that mechanical forces sensed at cell-cell junctions by the YAP target gene AmotL2 are directly involved in changes in global chromatin accessibility and activity of the histone methyltransferase EZH2, leading to modulation of YAP promotor activity. Functionally, shear stress-induced proliferation of endothelial cells in vivo was reliant on AmotL2 and YAP/TAZ (transcriptional coactivator with PDZ-binding motif) expression. Mechanistically, uncoupling of the nuclear-cytoskeletal connection from junctions and focal adhesions led to altered nuclear morphology, chromatin accessibility, and YAP promotor activity. CONCLUSIONS: Our findings reveal a role for AmotL2 and nuclear-cytoskeletal force transmission in modulating the epigenetic and transcriptional regulation of YAP to maintain a mechano-enforced positive feedback loop of vascular homeostasis. These findings may offer an explanation as to the proinflammatory phenotype that leads to aneurysm formation observed in AmotL2 endothelial deletion models.


Subject(s)
Adaptor Proteins, Signal Transducing , Trans-Activators , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Trans-Activators/metabolism , Mechanotransduction, Cellular , Endothelial Cells/metabolism , Epigenesis, Genetic , Chromatin
2.
Dis Model Mech ; 16(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37909406

ABSTRACT

The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.


Subject(s)
Endothelial Cells , Mechanotransduction, Cellular , Endothelial Cells/physiology , Mechanotransduction, Cellular/physiology , Endothelium, Vascular , Extracellular Matrix , Aorta , Stress, Mechanical
3.
Front Cell Dev Biol ; 11: 1129015, 2023.
Article in English | MEDLINE | ID: mdl-37138793

ABSTRACT

CD146, also known as melanoma cell adhesion molecule (MCAM), is expressed in numerous cancers and has been implicated in the regulation of metastasis. We show that CD146 negatively regulates transendothelial migration (TEM) in breast cancer. This inhibitory activity is reflected by a reduction in MCAM gene expression and increased promoter methylation in tumour tissue compared to normal breast tissue. However, increased CD146/MCAM expression is associated with poor prognosis in breast cancer, a characteristic that is difficult to reconcile with inhibition of TEM by CD146 and its epigenetic silencing. Single cell transcriptome data revealed MCAM expression in multiple cell types, including the malignant cells, tumour vasculature and normal epithelium. MCAM expressing malignant cells were in the minority and expression was associated with epithelial to mesenchymal transition (EMT). Furthermore, gene expression signatures defining invasiveness and a stem cell-like phenotype were most strongly associated with mesenchymal-like tumour cells with low levels of MCAM mRNA, likely to represent a hybrid epithelial/mesenchymal (E/M) state. Our results show that high levels of MCAM gene expression are associated with poor prognosis in breast cancer because they reflect tumour vascularisation and high levels of EMT. We suggest that high levels of mesenchymal-like malignant cells reflect large populations of hybrid E/M cells and that low CD146 expression on these hybrid cells is permissive for TEM, aiding metastasis.

4.
Methods Mol Biol ; 2441: 277-286, 2022.
Article in English | MEDLINE | ID: mdl-35099744

ABSTRACT

Angiogenesis relies on the spatial and temporal coordination of endothelial migration and proliferation to form new blood vessels. This occurs through synchronous activation of multiple downstream pathways which facilitate vascular development. Proangiogenic growth factors and supporting extracellular matrix allow the formation of capillary-like tubules, reminiscent of microvascular beds, in vitro. In this chapter, we describe a methodology for the establishment of vascular networks by co-culture of endothelial cells and fibroblasts to facilitate the study of tubulogenic and angiogenic potential. We detail the use of siRNA mediated knockdown to deplete target genes of interest, in either the endothelial or fibroblast cells, to allow the assessment of their role in angiogenesis. Finally, we detail how these vascular networks may be stained using immunofluorescence to allow quantification of angiogenic potential in vitro.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Coculture Techniques , Endothelial Cells/metabolism , Fibroblasts/metabolism , Humans , Neovascularization, Pathologic , Neovascularization, Physiologic/physiology , Vascular Endothelial Growth Factor A/genetics
5.
Methods Mol Biol ; 2441: 329-338, 2022.
Article in English | MEDLINE | ID: mdl-35099749

ABSTRACT

During metastasis, a subset of cancer cells will break away from the primary tumor and invade into the surrounding tissue. Cancer cells which are able to breach the endothelium and enter the blood stream are then transported in the circulation to new target organs where they may seed as a distant metastasis. In order to invade this new organ, the cancer cells must bind to and traverse the vascular wall, a process known as transendothelial migration (TEM) or extravasation. This chapter describes an in vitro approach to automated live cell imaging and analysis of TEM in order to accurately quantify these kinetics and aid the researcher in dissecting the mechanisms of tumor-endothelial interactions during this phase of metastasis.


Subject(s)
Endothelium, Vascular , Neoplasms , Cell Movement , Endothelium, Vascular/metabolism , Humans , Neoplasms/pathology , Transendothelial and Transepithelial Migration
6.
J Cell Sci ; 134(15)2021 08 01.
Article in English | MEDLINE | ID: mdl-34374417

ABSTRACT

Metastasis requires tumour cells to cross endothelial cell (EC) barriers using pathways similar to those used by leucocytes during inflammation. Cell surface CD99 is expressed by healthy leucocytes and ECs, and participates in inflammatory transendothelial migration (TEM). Tumour cells also express CD99, and we have analysed its role in tumour progression and cancer cell TEM. Tumour cell CD99 was required for adhesion to ECs but inhibited invasion of the endothelial barrier and migratory activity. Furthermore, CD99 depletion in tumour cells caused redistribution of the actin cytoskeleton and increased activity of the Rho GTPase CDC42, known for its role in actin remodelling and cell migration. In a xenograft model of breast cancer, tumour cell CD99 expression inhibited metastatic progression, and patient samples showed reduced expression of the CD99 gene in brain metastases compared to matched primary breast tumours. We conclude that CD99 negatively regulates CDC42 and cell migration. However, CD99 has both pro- and anti-tumour activity, and our data suggest that this results in part from its functional linkage to CDC42 and the diverse signalling pathways downstream of this Rho GTPase. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Actins , Neoplasms , 12E7 Antigen , Actins/genetics , Cell Movement/genetics , Humans , Transendothelial and Transepithelial Migration , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
7.
iScience ; 24(6): 102555, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34142056

ABSTRACT

Glycogen synthase kinase-3 (GSK-3) is a positive regulator of PD-1 expression in CD8+ T cells and GSK-3 inhibition enhances T cell function and is effective in the control of tumor growth. GSK-3 has two co-expressed isoforms, GSK-3α and GSK-3ß. Using conditional gene targeting, we demonstrate that both isoforms contribute to T cell function to different degrees. Gsk3b-/- mice suppressed tumor growth to the same degree as Gsk3a/b-/- mice, whereas Gsk3a-/- mice behaved similarly to wild-type, revealing an important role for GSK-3ß in regulating T cell-mediated anti-tumor immunity. The individual GSK-3α and ß isoforms have differential effects on PD-1, IFNγ, and granzyme B expression and operate in synergy to control PD-1 expression and the infiltration of tumors with CD4 and CD8 T cells. Our data reveal a complex interplay of the GSK-3 isoforms in the control of tumor immunity and highlight non-redundant activity of GSK-3 isoforms in T cells, with implications for immunotherapy.

8.
Br J Cancer ; 118(9): 1229-1237, 2018 05.
Article in English | MEDLINE | ID: mdl-29540773

ABSTRACT

BACKGROUND: Metastatic spread is responsible for the majority of cancer-associated deaths. The tumour microenvironment, including hypoxia, is a major driver of metastasis. The aim of this study was to investigate the role of the E3 ligase WSB-1 in breast cancer biology in the context of the hypoxic tumour microenvironment, particularly regarding metastatic spread. METHODS: In this study, WSB-1 expression was evaluated in breast cancer cell lines and patient samples. In silico analyses were used to determine the impact of WSB-1 expression on distant metastasis-free survival (DMFS) in patients, and correlation between WSB1 expression and hypoxia gene expression signatures. The role of WSB-1 on metastasis promotion was evaluated in vitro and in vivo. RESULTS: High WSB1 expression was associated with decreased DMFS in ER-breast cancer and PR-breast cancer patients. Surprisingly, WSB1 expression was not positively correlated with known hypoxic gene expression signatures in patient samples. Our study is the first to show that WSB-1 knockdown led to decreased metastatic potential in breast cancer hormone receptor-negative models in vitro and in vivo. WSB-1 knockdown was associated with decreased metalloproteinase (MMP) activity, vascular endothelial growth factor (VEGF) secretion, and angiogenic potential. CONCLUSIONS: Our data suggests that WSB-1 may be an important regulator of aggressive metastatic disease in hormone receptor-negative breast cancer. WSB-1 could therefore represent a novel regulator and therapeutic target for secondary breast cancer in these patients.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Proteins/physiology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intracellular Signaling Peptides and Proteins , MCF-7 Cells , Mice , Mice, Nude , Neoplasm Metastasis , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...