Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Gut Microbes ; 15(1): 2186677, 2023.
Article in English | MEDLINE | ID: mdl-36907988

ABSTRACT

Along with Helicobacter pylori infection, the gastric microbiota is hypothesized to modulate stomach cancer risk in susceptible individuals. Whole metagenomic shotgun sequencing (WMS) is a sequencing approach to characterize the microbiome with advantages over traditional culture and 16S rRNA sequencing including identification of bacterial and non-bacterial taxa, species/strain resolution, and functional characterization of the microbiota. In this study, we used WMS to survey the microbiome in extracted DNA from antral gastric biopsy samples from Colombian patients residing in the high-risk gastric cancer town Túquerres (n = 10, H. pylori-positive = 7) and low-risk town of Tumaco (n = 10, H. pylori-positive = 6). Kraken2/Bracken was used for taxonomic classification and abundance. Functional gene profiles were inferred by InterProScan and KEGG analysis of assembled contigs and gene annotation. The most abundant taxa represented bacteria, non-human eukaryota, and viral genera found in skin, oral, food, and plant/soil environments including Staphylococus, Streptococcus, Bacillus, Aspergillus, and Siphoviridae. H. pylori was the predominant taxa present in H. pylori-positive samples. Beta diversity was significantly different based on H. pylori-status, risk group, and sex. WMS detected more bacterial taxa than 16S rRNA sequencing and aerobic, anaerobic, and microaerobic culture performed on the same gastric biopsy samples. WMS identified significant differences in functional profiles found between H. pylori-status, but not risk or sex groups. H. pylori-positive samples were significantly enriched for H. pylori-specific genes including virulence factors such as vacA, cagA, and urease, while carbohydrate and amino acid metabolism genes were enriched in H. pylori-negative samples. This study shows WMS has the potential to characterize the taxonomy and function of the gastric microbiome as risk factors for H. pylori-associated gastric disease. Future studies will be needed to compare and validate WMS versus traditional culture and 16S rRNA sequencing approaches for characterization of the gastric microbiome.


Subject(s)
Gastritis , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Microbiota , Stomach Neoplasms , Humans , Stomach Neoplasms/microbiology , Colombia , RNA, Ribosomal, 16S/genetics , Helicobacter Infections/microbiology , Gastritis/pathology , Helicobacter pylori/genetics , Biopsy , Risk Factors , South America
2.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: mdl-33692136

ABSTRACT

Colombia, South America has one of the world's highest burdens of Helicobacter pylori infection and gastric cancer. While multidrug antibiotic regimens can effectively eradicate H. pylori, treatment efficacy is being jeopardized by the emergence of antibiotic-resistant H. pylori strains. Moreover, the spectrum of and genetic mechanisms for antibiotic resistance in Colombia is underreported. In this study, 28 H. pylori strains isolated from gastric biopsy specimens from a high-gastric-cancer-risk (HGCR) population living in the Andes Mountains in Túquerres, Colombia and 31 strains from a low-gastric-cancer-risk (LGCR) population residing on the Pacific coast in Tumaco, Colombia were subjected to antibiotic susceptibility testing for amoxicillin, clarithromycin, levofloxacin, metronidazole, rifampin, and tetracycline. Resistance-associated genes were amplified by PCR for all isolates, and 29 isolates were whole-genome sequenced (WGS). No strains were resistant to amoxicillin, clarithromycin, or rifampin. One strain was resistant to tetracycline and had an A926G mutation in its 16S rRNA gene. Levofloxacin resistance was observed in 12/59 isolates and was significantly associated with N87I/K and/or D91G/Y mutations in gyrA Most isolates were resistant to metronidazole; this resistance was significantly higher in the LGCR (31/31) group compared to the HGCR (24/28) group. Truncations in rdxA and frxA were present in nearly all metronidazole-resistant strains. There was no association between phylogenetic relationship and resistance profiles based on WGS analysis. Our results indicate H. pylori isolates from Colombians exhibit multidrug antibiotic resistance. Continued surveillance of H. pylori antibiotic resistance in Colombia is warranted in order to establish appropriate eradication treatment regimens for this population.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clarithromycin/pharmacology , Colombia/epidemiology , Drug Resistance, Bacterial/genetics , Helicobacter Infections/drug therapy , Helicobacter Infections/epidemiology , Helicobacter pylori/genetics , Humans , Metronidazole/pharmacology , Microbial Sensitivity Tests , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S , South America , Stomach Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL