Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Exp Physiol ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460125

ABSTRACT

The ability to increase cardiac output during dynamic exercise is paramount for the ability to maintain workload performance. Reflex control of the cardiovascular system during exercise is complex and multifaceted involving multiple feedforward and feedback systems. One major reflex thought to mediate the autonomic adjustments to exercise is termed the muscle metaboreflex and is activated via afferent neurons within active skeletal muscle which respond to the accumulation of interstitial metabolites during exercise when blood flow and O2 delivery are insufficient to meet metabolic demands. This is one of the most powerful cardiovascular reflexes capable of eliciting profound increases in sympathetic nerve activity, arterial blood pressure, central blood volume mobilization, heart rate and cardiac output. This review summarizes the mechanisms meditating muscle metaboreflex-induced increases in cardiac output. Although much has been learned from studies using anaesthetized and/or decerebrate animals, we focus on studies in conscious animals and humans performing volitional exercise. We discuss the separate and interrelated roles of heart rate, ventricular contractility, ventricular preload and ventricular-vascular coupling as well as the interaction with other cardiovascular reflexes which modify muscle metaboreflex control of cardiac output. We discuss how these mechanisms may be altered in subjects with heart failure with reduced ejection fraction and offer suggestions for future studies.

2.
J Clin Med ; 13(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38337589

ABSTRACT

Metabolic syndrome (MetS) describes a set of disorders that collectively influence cardiovascular health, and includes hypertension, obesity, insulin resistance, diabetes, and dyslipidemia. All these components (hypertension, obesity, dyslipidemia, and prediabetes/diabetes) have been shown to modify autonomic function. The major autonomic dysfunction that has been documented with each of these components is in the control of sympathetic outflow to the heart and periphery at rest and during exercise through modulation of the arterial baroreflex and the muscle metaboreflex. Many studies have described MetS components in singularity or in combination with the other major components of metabolic syndrome. However, many studies lack the capability to study all the factors of metabolic syndrome in one model or have not focused on studying the effects of how each component as it arises influences overall autonomic function. The goal of this review is to describe the current understanding of major aspects of metabolic syndrome that most likely contribute to the consequent/associated autonomic alterations during exercise and discuss their effects, as well as bring light to alternative mechanisms of study.

3.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R110-R120, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38009212

ABSTRACT

Exercise intolerance is a hallmark symptom of heart failure and to a large extent stems from reductions in cardiac output that occur due to the inherent ventricular dysfunction coupled with enhanced muscle metaboreflex-induced functional coronary vasoconstriction, which limits increases in coronary blood flow. This creates a further mismatch between O2 delivery and O2 demand, which may activate the cardiac sympathetic afferent reflex (CSAR), causing amplification of the already increased sympathetic activity in a positive-feedback fashion. We used our chronically instrumented conscious canine model to evaluate if chronic ablation of afferents responsible for the CSAR would attenuate the gain of muscle metaboreflex before and after induction of heart failure. After afferent ablation, the gain of the muscle metaboreflex control of mean arterial pressure was significantly reduced before (-239.5 ± 16 to -95.2 ± 8 mmHg/L/min) and after the induction of heart failure (-185.6 ± 14 to -95.7 ± 12 mmHg/L/min). Similar results were observed for the strength (gain) of muscle metaboreflex control of heart rate, cardiac output, and ventricular contractility. Thus, we conclude that the CSAR contributes significantly to the strength of the muscle metaboreflex in normal animals with heart failure serving as an effective positive-feedback amplifier thereby further increasing sympathetic activity.NEW & NOTEWORTHY The powerful pressor responses from the CSAR arise via O2 delivery versus O2 demand imbalance. Muscle metaboreflex activation (MMA) simultaneously elicits coronary vasoconstriction (which is augmented in heart failure) and profound increases in cardiac work thereby upsetting oxygen balance. Whether MMA activates the CSAR thereby amplifying MMA responses is unknown. We observed that removal of the CSAR afferents attenuated the strength of the muscle metaboreflex in normal and subjects with heart failure.


Subject(s)
Heart Failure , Muscle, Skeletal , Animals , Dogs , Humans , Feedback , Vasoconstriction , Reflex/physiology , Heart Rate , Blood Pressure
4.
J Appl Physiol (1985) ; 135(6): 1300-1311, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37883101

ABSTRACT

Slow heart rate recovery following exercise may be influenced by persistent sympathoexcitation. This study examined 1) the effect of muscle metaboreflex activation (MMA) on heart rate recovery following dynamic exercise; and 2) whether the effect of MMA on heart rate recovery is reversible by reducing sympathoexcitation [baroreflex activation via phenylephrine (PE)] in canines. Twenty-two young adults completed control and MMA protocols during cycle ergometry at 110% ventilatory threshold with 5 min recovery. Heart rate recovery kinetics [tau (τ), amplitude, end-exercise, and end-recovery heart rate] and root mean square of successive differences (RMSSD) were measured. Five chronically instrumented canines completed control, MMA (50%-60% imposed reduction in hindlimb blood flow), and MMA with end-exercise PE infusion (MMA + PE) protocols during moderate exercise (6.4 km·h-1) and 3 min recovery. Heart rate recovery kinetics and MAP were measured. MAP increased during MMA versus control in canines (P < 0.001). Heart rate recovery τ was slower during MMA versus control in humans (17% slower; P = 0.011) and canines (150% slower; P = 0.002). Heart rate recovery τ was faster during MMA + PE versus MMA (40% faster; P = 0.034) and was similar to control in canines (P = 0.426). Amplitude, end-exercise, and end-recovery heart rate were similar between conditions in humans (all P ≥ 0.122) and in canines (all P ≥ 0.084). MMA decreased RMSSD in early recovery (P = 0.004). MMA-induced sympathoexcitation slows heart rate recovery and this effect is markedly attenuated with PE. Therefore, elevated sympathoexcitation via MMA impairs heart rate recovery and inhibition of this stimulus normalizes, in part, heart rate recovery.NEW & NOTEWORTHY Augmented sympathoexcitation, via muscle metaboreflex activation, functionally slows heart rate recovery in both young healthy adults and chronically instrumented canines. Furthermore, elevated sympathoexcitation corresponded with lower parasympathetic activity, as assessed by heart rate variability, during the first 3 min of recovery. Finally, sympathoinhibition, via phenylephrine infusion, normalizes heart rate recovery during muscle metaboreflex activation.


Subject(s)
Arterial Pressure , Reflex , Young Adult , Humans , Animals , Dogs , Heart Rate/physiology , Reflex/physiology , Arterial Pressure/physiology , Cardiac Output/physiology , Muscle, Skeletal/physiology , Phenylephrine , Blood Pressure
5.
Front Physiol ; 14: 1212775, 2023.
Article in English | MEDLINE | ID: mdl-37608839

ABSTRACT

Introduction: Prior studies report conflicting evidence regarding exercise pressor and metaboreflex responses in individuals with metabolic syndrome (MetS). Purpose: To test the hypotheses that 1) exercise pressor and metaboreflex responses are exaggerated in MetS and 2) these differences may be explained by elevated resting blood pressure. Methods: Blood pressure and heart rate (HR) were evaluated in 26 participants (13 MetS) during 2 min of handgrip exercise followed by 3 min of post-exercise circulatory occlusion (PECO). Systolic (SBP), diastolic (DBP), and mean arterial pressure (MAP), along with HR and a cumulative blood pressure index (BPI), were compared between groups using independent samples t-tests, and analyses of covariance were used to adjust for differences in resting blood pressure, fasting blood glucose (FBG), and waist circumference (WC). Results: ΔSBP (∼78% and ∼54%), ΔMAP (∼67% and ∼55%), and BPI (∼16% and ∼20%) responses were significantly exaggerated in individuals with MetS during handgrip and PECO, respectively (all p ≤ 0.04). ΔDBP, ΔMAP, and BPI responses during handgrip remained significantly different between groups after independently covarying for resting blood pressure (p < 0.01), and after simultaneously covarying for resting blood pressure, FBG, and WC (p ≤ 0.03). Likewise, peak SBP, DBP, MAP, and BPI responses during PECO remained significantly different between groups after adjusting for resting blood pressure (p ≤ 0.03), with peak SBP, MAP, and BPI response remaining different between groups after adjusting for all three covariates simultaneously (p ≤ 0.04). Conclusion: These data suggest that exercise pressor and metaboreflex responses are significantly exaggerated in MetS independent of differences in resting blood pressure, FBG, or WC.

6.
J Appl Physiol (1985) ; 135(2): 260-270, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37348015

ABSTRACT

Blood flow restriction training (BFRT) employs partial vascular occlusion of exercising muscle and has been shown to increase muscle performance while using reduced workload and training time. Numerous studies have demonstrated that BFRT increases muscle hypertrophy, mitochondrial function, and beneficial vascular adaptations. However, changes in cardiovascular hemodynamics during the exercise protocol remain unknown, as most studies measured blood pressure before the onset and after the cessation of exercise. With reduced perfusion to the exercising muscle during BFRT, the resultant accumulation of metabolites within the ischemic muscle could potentially trigger a large reflex increase in blood pressure, termed the muscle metaboreflex. At low workloads, this pressor response occurs primarily via increases in cardiac output. However, when increases in cardiac output are limited (e.g., heart failure or during severe exercise), the reflex shifts to peripheral vasoconstriction as the primary mechanism to increase blood pressure, potentially increasing the risk of a cardiovascular event. Using our chronically instrumented conscious canine model, we utilized a 60% reduction in femoral blood pressure applied to the hindlimbs during steady-state treadmill exercise (3.2 km/h) to reproduce the ischemic environment observed during BFRT. We observed significant increases in heart rate (+19 ± 3 beats/min), stroke volume (+2.52 ± 1.2 mL), cardiac output (+1.21 ± 0.2 L/min), mean arterial pressure (+18.2 ± 2.4 mmHg), stroke work (+1.93 ± 0.2 L/mmHg), and nonischemic vascular conductance (+3.62 ± 1.7 mL/mmHg), indicating activation of the muscle metaboreflex.NEW & NOTEWORTHY Blood flow restriction training (BFRT) increases muscle mass, strength, and endurance. There has been minimal consideration of the reflex cardiovascular responses that could be elicited during BFRT sessions. We showed that during low-intensity exercise BFRT may trigger large reflex increases in blood pressure and sympathetic activity due to muscle metaboreflex activation. Thus, we urge caution when employing BFRT, especially in patients in whom exaggerated cardiovascular responses may occur that could cause sudden, adverse cardiovascular events.


Subject(s)
Blood Flow Restriction Therapy , Muscle Contraction , Humans , Animals , Dogs , Muscle, Skeletal/physiology , Reflex/physiology , Hemodynamics , Blood Pressure , Cardiac Output , Ischemia , Regional Blood Flow
7.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R720-R727, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36121147

ABSTRACT

Rapid regulation of arterial blood pressure on a beat-by-beat basis occurs primarily via arterial baroreflex control of cardiac output (CO) via rapid changes in heart rate (HR). Previous studies have shown that changes in HR do not always cause changes in CO, because stroke volume may vary. Whether these relationships are altered in hypertension is unknown. Using the spontaneous baroreflex sensitivity (SBRS) approach, we investigated whether baroreflex control of HR and CO were impaired after the induction of hypertension in conscious, chronically instrumented canines at rest, during mild exercise, and during exercise with metaboreflex activation (induced via reductions in hindlimb blood flow) both before and after induction of hypertension (induced via a modified Goldblatt approach-unilateral reduction in renal blood flow to ∼30% of control values until systolic pressure ≥ 140 mmHg and a diastolic pressure ≥ 90 mmHg for >30 days). After induction of hypertension, SBRS control of both HR and CO was reduced in all settings. In control, only about 50% of SBRS changes in HR caused changes in CO. This pattern was sustained in hypertension. Thus, in hypertension, the reduced SBRS in the control of HR caused reduced SBRS control of CO and this likely contributes to the increased incidence of orthostatic hypotension seen in hypertensive patients.


Subject(s)
Baroreflex , Hypertension , Dogs , Animals , Baroreflex/physiology , Heart Rate/physiology , Muscle, Skeletal/physiology , Cardiac Output/physiology , Blood Pressure/physiology
8.
J Physiol ; 600(22): 4779-4806, 2022 11.
Article in English | MEDLINE | ID: mdl-36121759

ABSTRACT

The assessment of left ventricular (LV) contractility in animal models is useful in various experimental paradigms, yet obtaining such measures is inherently challenging and surgically invasive. In a cross-species study using small and large animals, we comprehensively tested the agreement and validity of multiple single-beat surrogate metrics of LV contractility against the field-standard metrics derived from inferior vena cava occlusion (IVCO). Fifty-six rats, 27 minipigs and 11 conscious dogs underwent LV and arterial catheterization and were assessed for a range of single-beat metrics of LV contractility. All single-beat metrics were tested for the various underlying assumptions required to be considered a valid metric of cardiac contractility, including load-independency, sensitivity to inotropic stimulation, and ability to diagnose contractile dysfunction in cardiac disease. Of all examined single-beat metrics, only LV maximal pressure normalized to end-diastolic volume (EDV), end-systolic pressure normalized to EDV, and the maximal rate of rise of the LV pressure normalized to EDV showed a moderate-to-excellent agreement with their IVCO-derived reference measure and met all the underlying assumptions required to be considered as a valid cardiac contractile metric in both rodents and large-animal models. Our findings demonstrate that single-beat metrics can be used as a valid, reliable method to quantify cardiac contractile function in basic/preclinical experiments utilizing small- and large-animal models KEY POINTS: Validating and comparing indices of cardiac contractility that avoid caval occlusion would offer considerable advantages for the field of cardiovascular physiology. We comprehensively test the underlying assumptions of multiple single-beat indices of cardiac contractility in rodents and translate these findings to pigs and conscious dogs. We show that when performing caval occlusion is unfeasible, single-beat metrics can be utilized to accurately quantify cardiac inotropic function in basic and preclinical research employing various small and large animal species. We report that maximal left-ventricular (LV)-pressure normalized to end-diastolic volume (EDV), LV end-systolic pressure normalized to EDV and the maximal rate of rise of the LV pressure waveform normalized to EDV are the best three single-beat metrics to measure cardiac inotropic function in both small- and large-animal models.


Subject(s)
Benchmarking , Ventricular Function, Left , Animals , Dogs , Rats , Swine , Ventricular Function, Left/physiology , Swine, Miniature , Myocardial Contraction/physiology , Heart Ventricles , Stroke Volume/physiology
9.
Front Physiol ; 13: 835951, 2022.
Article in English | MEDLINE | ID: mdl-35450162

ABSTRACT

Autonomic alterations in blood pressure are primarily a result of arterial baroreflex modulation of systemic vascular resistance and cardiac output on a beat-by-beat basis. The combined central and peripheral control by the baroreflex likely acts to maintain efficient energy transfer from the heart to the systemic vasculature; termed ventricular-vascular coupling. This level of control is maintained whether at rest or during exercise in healthy subjects. During heart failure, the ventricular-vascular relationship is uncoupled and baroreflex dysfunction is apparent. We investigated if baroreflex dysfunction in heart failure exacerbated ventricular-vascular uncoupling at rest, and during exercise in response to baroreceptor unloading by performing bilateral carotid occlusions in chronically instrumented conscious canines. We observed in healthy subjects that baroreceptor unloading caused significant increases in effective arterial elastance (Ea) at rest (1.2 ± 0.3 mmHg/ml) and during exercise (1.3 ± 0.2 mmHg/ml) that coincided with significant increases in stroke work (SW) (1.5 ± 0.2 mmHg/ml) and (1.6 ± 0.2 mmHg/ml) suggesting maintained ventricular-vascular coupling. Heart Failure significantly increased the effect of baroreceptor unloading on Ea at rest (3.1 ± 0.7 mmHg/ml) and during exercise (2.3 ± 0.5 mmHg/ml) whereas no significant increases in stroke work occurred, thus signifying further ventricular-vascular uncoupling. We believe that the enhanced ventricular-vascular uncoupling observed during baroreceptor unloading only worsens the already challenged orthostatic and exercise tolerance and thereby contributes to poor exercise performance and quality of life for heart failure patients.

10.
Front Physiol ; 13: 841076, 2022.
Article in English | MEDLINE | ID: mdl-35399256

ABSTRACT

The ventricular-vascular relationship assesses the efficacy of energy transferred from the left ventricle to the systemic circulation and is quantified as the ratio of effective arterial elastance to maximal left ventricular elastance. This relationship is maintained during exercise via reflex increases in cardiovascular performance raising both arterial and ventricular elastance in parallel. These changes are, in part, due to reflexes engendered by activation of metabosensitive skeletal muscle afferents-termed the muscle metaboreflex. However, in heart failure, ventricular-vascular uncoupling is apparent and muscle metaboreflex activation worsens this relationship through enhanced systemic vasoconstriction markedly increasing effective arterial elastance which is unaccompanied by substantial increases in ventricular function. This enhanced arterial vasoconstriction is, in part, due to significant reductions in cardiac performance induced by heart failure causing over-stimulation of the metaboreflex due to under perfusion of active skeletal muscle, but also as a result of reduced baroreflex buffering of the muscle metaboreflex-induced peripheral sympatho-activation. To what extent the arterial baroreflex modifies the metaboreflex-induced changes in effective arterial elastance is unknown. We investigated in chronically instrumented conscious canines if removal of baroreflex input via sino-aortic baroreceptor denervation (SAD) would significantly enhance effective arterial elastance in normal animals and whether this would be amplified after induction of heart failure. We observed that effective arterial elastance (Ea), was significantly increased during muscle metaboreflex activation after SAD (0.4 ± 0.1 mmHg/mL to 1.4 ± 0.3 mmHg/mL). In heart failure, metaboreflex activation caused exaggerated increases in Ea and in this setting, SAD significantly increased the rise in Ea elicited by muscle metaboreflex activation (1.3 ± 0.3 mmHg/mL to 2.3 ± 0.3 mmHg/mL). Thus, we conclude that the arterial baroreflex does buffer muscle metaboreflex induced increases in Ea and this buffering likely has effects on the ventricular-vascular coupling.

11.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R385-R395, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34259041

ABSTRACT

Exercise intolerance is a hallmark symptom of cardiovascular disease and likely occurs via enhanced activation of muscle metaboreflex-induced vasoconstriction of the heart and active skeletal muscle which, thereby limits cardiac output and peripheral blood flow. Muscle metaboreflex vasoconstrictor responses occur via activation of metabolite-sensitive afferent fibers located in ischemic active skeletal muscle, some of which express transient receptor potential vanilloid 1 (TRPV1) cation channels. Local cardiac and intrathecal administration of an ultrapotent noncompetitive, dominant negative agonist resiniferatoxin (RTX) can ablate these TRPV1-sensitive afferents. This technique has been used to attenuate cardiac sympathetic afferents and nociceptive pain. We investigated whether intrathecal administration (L4-L6) of RTX (2 µg/kg) could chronically attenuate subsequent muscle metaboreflex responses elicited by reductions in hindlimb blood flow during mild exercise (3.2 km/h) in chronically instrumented conscious canines. RTX significantly attenuated metaboreflex-induced increases in mean arterial pressure (27 ± 5.0 mmHg vs. 6 ± 8.2 mmHg), cardiac output (1.40 ± 0.2 L/min vs. 0.28 ± 0.1 L/min), and stroke work (2.27 ± 0.2 L·mmHg vs. 1.01 ± 0.2 L·mmHg). Effects were maintained until 78 ± 14 days post-RTX at which point the efficacy of RTX injection was tested by intra-arterial administration of capsaicin (20 µg/kg). A significant reduction in the mean arterial pressure response (+45.7 ± 6.5 mmHg pre-RTX vs. +19.7 ± 3.1 mmHg post-RTX) was observed. We conclude that intrathecal administration of RTX can chronically attenuate the muscle metaboreflex and could potentially alleviate enhanced sympatho-activation observed in cardiovascular disease states.


Subject(s)
Cardiac Output/drug effects , Diterpenes/pharmacology , Hindlimb/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Animals , Arterial Pressure/drug effects , Cardiac Output/physiology , Diterpenes/administration & dosage , Dogs , Heart/drug effects , Heart/physiopathology , Hindlimb/physiopathology , Ischemia/physiopathology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Regional Blood Flow/drug effects , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Vasoconstriction/physiology
12.
Exp Physiol ; 106(2): 401-411, 2021 02.
Article in English | MEDLINE | ID: mdl-33226720

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does the muscle metaboreflex affect the ratio of left ventricular contraction/relaxation rates and does heart failure impact this relationship. What is the main finding and its importance? The effect of muscle metaboreflex activation on the ventricular relaxation rate was significantly attenuated in heart failure. Heart failure attenuates the exercise and muscle metaboreflex-induced changes in the contraction/relaxation ratio. In heart failure, the reduced ability to raise cardiac output during muscle metaboreflex activation may not solely be due to attenuation of ventricular contraction but also alterations in ventricular relaxation and diastolic function. ABSTRACT: The relationship between contraction and relaxation rates of the left ventricle varies with exercise. In in vitro models, this ratio was shown to be relatively unaltered by changes in sarcomere length, frequency of stimulation, and ß-adrenergic stimulation. We investigated whether the ratio of contraction to relaxation rate is maintained in the whole heart during exercise and muscle metaboreflex activation and whether heart failure alters these relationships. We observed that in healthy subjects the ratio of contraction to relaxation increases from rest to exercise as a result of a higher increase in contraction relative to relaxation. During muscle metaboreflex activation the ratio of contraction to relaxation is significantly reduced towards 1.0 due to a large increase in relaxation rate matching contraction rate. In heart failure, contraction and relaxation rates are significantly reduced, and increases during exercise are attenuated. A significant increase in the ratio was observed from rest to exercise although baseline ratio values were significantly reduced close to 1.0 when compared to healthy subjects. There was no significant change observed between exercise and muscle metaboreflex activation nor was the ratio during muscle metaboreflex activation significantly different between heart failure and control. We conclude that heart failure reduces the muscle metaboreflex gain and contraction and relaxation rates. Furthermore, we observed that the ratio of the contraction and relaxation rates during muscle metaboreflex activation is not significantly different between control and heart failure, but significant changes in the ratio in healthy subjects due to increased relaxation rate were abolished in heart failure.


Subject(s)
Heart Failure/physiopathology , Heart Ventricles/physiopathology , Heart/physiopathology , Myocardial Contraction/physiology , Reflex/physiology , Animals , Cardiac Output/physiology , Disease Models, Animal , Dogs , Female , Hemodynamics/physiology , Male , Vascular Resistance/physiology
13.
Am J Physiol Regul Integr Comp Physiol ; 319(1): R1-R10, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32348680

ABSTRACT

Dynamic exercise elicits robust increases in sympathetic activity in part due to muscle metaboreflex activation (MMA), a pressor response triggered by activation of skeletal muscle afferents. MMA during dynamic exercise increases arterial pressure by increasing cardiac output via increases in heart rate, ventricular contractility, and central blood volume mobilization. In heart failure, ventricular function is compromised, and MMA elicits peripheral vasoconstriction. Ventricular-vascular coupling reflects the efficiency of energy transfer from the left ventricle to the systemic circulation and is calculated as the ratio of effective arterial elastance (Ea) to left ventricular maximal elastance (Emax). The effect of MMA on Ea in normal subjects is unknown. Furthermore, whether muscle metaboreflex control of Ea is altered in heart failure has not been investigated. We utilized two previously published methods of evaluating Ea [end-systolic pressure/stroke volume (EaPV)] and [heart rate × vascular resistance (EaZ)] during rest, mild treadmill exercise, and MMA (induced via partial reductions in hindlimb blood flow imposed during exercise) in chronically instrumented conscious canines before and after induction of heart failure via rapid ventricular pacing. In healthy animals, MMA elicits significant increases in effective arterial elastance and stroke work that likely maintains ventricular-vascular coupling. In heart failure, Ea is high, and MMA-induced increases are exaggerated, which further exacerbates the already uncoupled ventricular-vascular relationship, which likely contributes to the impaired ability to raise stroke work and cardiac output during exercise in heart failure.


Subject(s)
Arteries/physiopathology , Heart Failure/physiopathology , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Animals , Arteries/innervation , Dogs , Elasticity , Female , Heart Rate , Hindlimb/blood supply , Male , Muscle, Skeletal/innervation , Neurons, Afferent , Reflex/physiology , Stroke Volume , Vascular Resistance
14.
Front Physiol ; 9: 1829, 2018.
Article in English | MEDLINE | ID: mdl-30618837

ABSTRACT

During both static and dynamic exercise hypertensive subjects can experience robust increases in arterial pressure to such an extent that heavy exercise is often not recommended in these patients due to the dangerously high levels of blood pressure sometimes observed. Currently, the mechanisms mediating this cardiovascular dysfunction during exercise in hypertension are not fully understood. The major reflexes thought to mediate the cardiovascular responses to exercise in normotensive healthy subjects are central command, arterial baroreflex and responses to stimulation of skeletal muscle mechano-sensitive and metabo-sensitive afferents. This review will summarize our current understanding of the roles of these reflexes and their interactions in mediating the altered cardiovascular responses to exercise observed in hypertension. We conclude that much work is needed to fully understand the mechanisms mediating excessive pressor response to exercise often seen in hypertensive patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...