Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
FEBS Open Bio ; 14(4): 532-544, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38321830

ABSTRACT

Unlike mammals, fish express two type II interferons, IFNγ and fish-specific IFNγ (IFNγ-related or IFNγrel). We previously reported the presence of two IFNγrel genes, IFNγrel 1 and IFNγrel 2, which exhibit potent antiviral activity in the Ginbuna crucian carp, Carassius auratus langsdorfii. We also found that IFNγrel 1 increased allograft rejection; however, the IFNγrel 1 receptor(s) and signaling pathways underlying this process have not yet been elucidated. In this study, we examined the unique signaling mechanism of IFNγrel 1 and its receptors. The phosphorylation and transcriptional activation of STAT6 in response to recombinant Ginbuna IFNγrel 1 (rgIFNγrel 1) was observed in Ginbuna-derived cells. Binding of rgIFNγrel 1 to Class II cytokine receptor family members (Crfbs), Crfb5 and Crfb17, which are also known as IFNAR1 and IFNGR1-1, respectively, was detected by flow cytometry. Expression of the IFNγrel 1-inducible antiviral gene, Isg15, was highest in Crfb5- and Crfb17-overexpressing GTS9 cells. Dimerization of Crfb5 and Crfb17 was detected by chemical crosslinking. The results indicate that IFNγrel 1 activates Stat6 through an interaction with unique pairs of receptors, Crfb5 and Crfb17. Indeed, this cascade is distinct from not only that of IFNγ but also that of known IFNs in other vertebrates. IFNs may be classified by their receptor and signal transduction pathways. Taken together, IFNγrel 1 may be classified as a novel type of IFN family member in vertebrates. Our findings provide important information on interferon gene evolution in bony fish.


Subject(s)
Carps , Interferon-gamma , Animals , Interferon-gamma/metabolism , Interferons , Carps/metabolism , Signal Transduction , Antiviral Agents , Mammals
2.
NPJ Biofilms Microbiomes ; 9(1): 15, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015942

ABSTRACT

Black band disease (BBD) in corals is characterized by a distinctive, band-like microbial mat, which spreads across the tissues and often kills infected colonies. The microbial mat is dominated by cyanobacteria but also commonly contains sulfide-oxidizing bacteria (SOB), sulfate-reducing bacteria (SRB), and other microbes. The migration rate in BBD varies across different environmental conditions, including temperature, light, and pH. However, whether variations in the migration rates reflect differences in the microbial consortium within the BBD mat remains unknown. Here, we show that the micro-scale surface structure, bacterial composition, and spatial distribution differed across BBD lesions with different migration rates. The migration rate was positively correlated with the relative abundance of potential SOBs belonging to Arcobacteraceae localized in the middle layer within the mat and negatively correlated with the relative abundance of other potential SOBs belonging to Rhodobacteraceae. Our study highlights the microbial composition in BBD as an important determinant of virulence.


Subject(s)
Anthozoa , Cyanobacteria , Animals , Anthozoa/microbiology , Virulence , Sulfides
3.
Fish Shellfish Immunol Rep ; 3: 100049, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36419596

ABSTRACT

Hemoglobin beta (Hbß) is a heme-binding protein capable of oxygen delivery. The oligopeptides derived from Hbß in fish mucus are active against a variety of gram-negative bacteria and protozoa. To gain information on the physiological and immunological roles of Hbß in the mucosal tissues of fish, we analyzed changes in Hbß gene expression levels in the epidermis, gills, and intestine of Japanese flounder, Paralichthys olivaceus, in response to heat stress, Edwardsiella piscicida infection, and trial feeding of immunostimulants, high-concentration ascorbic acid (AsA) or lactoferrin (LF). The results of quantitative real-time PCR showed that expression of the Hbß gene in the gills decreased markedly when exposed to heat stress, whereas that in the epidermis exhibited an increase 3h after infection with E. piscicida. Seven days after starting to feed either immunostimulant, epidermal Hbß gene expression in all AsA or LF dose groups was significantly higher than in the control group. The results of in situ hybridization showed that the abundance and intensity of the stained cells in the epidermis and in the gills were consistent with the expression levels of Hbß gene obtained from the infection and immunosuppressant experiments and the heat stress experiment, respectively. Our results suggest that mucosal Hbß gene expression is closely related to physiological and immunological status and could be a useful indicator for monitoring condition of fish health.

4.
Fish Shellfish Immunol ; 114: 20-27, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33857621

ABSTRACT

To search immune defense proteins in skin mucus of Japanese flounder fed with a diet containing high concentration of ascorbic acid, we carried out 2D-PAGE and compared the resolved pattern of proteins between control group that fed commercial diet and ascorbic acid supplemented group (AsA group) fed a diet supplemented with high concentration of ascorbic acid (2,000 mg/kg) for 7 days. The results revealed that there were many proteins exhibited distinct increase in AsA group. Among them, 6 regions that showed a dramatic elevation were chosen for protein identification using LC-MS/MS analysis and Mascot database search. Six proteins were identified, i.e. serotransferrin (Sero), transferrin (Trans), warm temperature acclimation-related 65 kDa protein (Wap65), complement component c3 (C3), hemoglobin beta-A chain (Hbß) and apolipoprotein A-1 (Apo). Quantitative RT-PCR analysis showed that the mRNA level of Hbß in epidermis of AsA group gave much higher increase (11.6 folds) than control group; the levels of Sero/Trans, Wap65, C3 and Apo showed no apparent difference between the two groups. The mRNA levels of wap65 and c3 in the liver and Apo in the kidney of AsA group exhibited significant increase in comparison to control group. In the case of secreted immunoglobulin M (IgM) and lysozyme (lyz), no difference of the mRNA levels of IgM in epidermis, gill, kidney, spleen and intestine, and lyz in epidermis, gill, spleen and intestine, was observed. The results of in situ hybridization confirmed the elevation of Hbß mRNA level in the epidermis tissue of AsA group. Our present study provided additional evidence showing the effectiveness of AsA in activating innate immune defense system in skin mucosal tissue of fish.


Subject(s)
Ascorbic Acid/pharmacology , Fish Proteins/metabolism , Flounder/metabolism , Gene Expression Regulation/drug effects , Mucus/metabolism , Animals , Ascorbic Acid/administration & dosage , Dietary Supplements , Dose-Response Relationship, Drug , Fish Proteins/immunology , Gene Expression Regulation/immunology , Liver/chemistry , Liver/metabolism
5.
J Fish Dis ; 44(8): 1065-1074, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33755230

ABSTRACT

We analysed the predisposing factors for Edwardsiella ictaluri infection in the riverine ayu Plecoglossus altivelis on the basis of environmental and epidemiological data obtained in a tributary to and the lower reaches of the Tama River, Japan, in July and August 2011-2015. Mortality of ayu due to E. ictaluri infection was observed only in the tributary in August 2012 and 2013; both periods were unusually hot. During these mortality events, daily average water temperatures rose approximately 3-4°C over 4-8 days, reaching the optimum temperature for E. ictaluri infection (>25°C) and approaching the upper tolerable limit for ayu (30°C). Diurnal water temperature ranges (DWTRs) in the tributary during the mortality events exceeded 6°C, which was 1-2°C greater than in the lower reaches. Experimental infection of ayu with E. ictaluri resulted in higher mortality when exposed to 6°C DWTR than to 4°C DWTR. Furthermore, water levels in the tributary were generally low in August 2012 and 2013 because of low rainfall. From these results, we conclude that unusually high-water temperatures combined with high DWTRs and low water levels drove riverine ayu mortality from E. ictaluri infection.


Subject(s)
Edwardsiella ictaluri/physiology , Enterobacteriaceae Infections/veterinary , Fish Diseases/mortality , Hot Temperature/adverse effects , Osmeriformes , Animals , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/mortality , Fish Diseases/microbiology , Japan/epidemiology , Rivers
6.
Sci Rep ; 9(1): 14662, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601819

ABSTRACT

Bacterial diversity associated with corals has been studied extensively, however, localization of bacterial associations within the holobiont is still poorly resolved. Here we provide novel insight into the localization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. In total, 318 and 308 CAMAs were characterized via histological and fluorescent in situ hybridization (FISH) approaches respectively, and shown to be distributed extensively throughout coral tissues collected from five sites in Japan and Australia. The densities of CAMAs within the tissues were negatively correlated with the distance from the coastline (i.e. lowest densities at offshore sites). CAMAs were randomly distributed across the six coral tissue regions investigated. Within each CAMA, bacterial cells had similar morphological characteristics, but bacterial morphologies varied among CAMAs, with at least five distinct types identified. Identifying the location of microorganisms associated with the coral host is a prerequisite for understanding their contributions to fitness. Localization of tissue-specific communities housed within CAMAs is particularly important, as these communities are potentially important contributors to vital metabolic functions of the holobiont.


Subject(s)
Anthozoa/microbiology , Bacteria/isolation & purification , Microbiota/genetics , Symbiosis , Animals , Anthozoa/physiology , Australia , Bacteria/genetics , Coral Reefs , DNA, Bacterial/isolation & purification , In Situ Hybridization, Fluorescence , Japan , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
PeerJ ; 4: e2424, 2016.
Article in English | MEDLINE | ID: mdl-27688961

ABSTRACT

In situ visualization of microbial communities within their natural habitats provides a powerful approach to explore complex interactions between microorganisms and their macroscopic hosts. Specifically, the application of fluorescence in situ hybridization (FISH) to simultaneously identify and visualize diverse microbial taxa associated with coral hosts, including symbiotic algae (Symbiodinium), Bacteria, Archaea, Fungi and protists, could help untangle the structure and function of these diverse taxa within the coral holobiont. However, the application of FISH approaches to coral samples is constrained by non-specific binding of targeted rRNA probes to cellular structures within the coral animal tissues (including nematocysts, spirocysts, granular gland cells within the gastrodermis and cnidoglandular bands of mesenterial filaments). This issue, combined with high auto-fluorescence of both host tissues and endosymbiotic dinoflagellates (Symbiodinium), make FISH approaches for analyses of coral tissues challenging. Here we outline the major pitfalls associated with applying FISH to coral samples and describe approaches to overcome these challenges.

8.
J Exp Biol ; 219(Pt 8): 1146-53, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26944491

ABSTRACT

To elucidate the degradation process of the posterior silk gland during metamorphosis of the silkworm ITALIC! Bombyx mori, tissues collected on the 6th day after entering the 5th instar (V6), prior to spinning (PS), during spinning (SP) and after cocoon formation (CO) were used to analyze macroautophagy, chaperone-mediated autophagy (CMA) and the adenosine triphosphate (ATP)-dependent ubiquitin proteasome. Immediately after entering metamorphosis stage PS, the levels of ATP and phosphorylated p70S6 kinase protein decreased spontaneously and continued to decline at SP, followed by a notable restoration at CO. In contrast, phosphorylated AMP-activated protein kinase α (AMPKα) showed increases at SP and CO. Most of the Atg8 protein was converted to form II at all stages. The levels of ubiquitinated proteins were high at SP and CO, and low at PS. The proteasome activity was high at V6 and PS but low at SP and CO. In the isolated lysosome fractions, levels of Hsc70/Hsp70 protein began to increase at PS and continued to rise at SP and CO. The lysosomal cathepsin B/L activity showed a dramatic increase at CO. Our results clearly demonstrate that macroautophagy occurs before entering the metamorphosis stage and strongly suggest that the CMA pathway may play an important role in the histolysis of the posterior silk gland during metamorphosis.


Subject(s)
Animal Structures/metabolism , Autophagy , Bombyx/anatomy & histology , Metamorphosis, Biological , Molecular Chaperones/metabolism , Silk/metabolism , Adenosine Triphosphate/pharmacology , Amino Acid Sequence , Animal Structures/anatomy & histology , Animal Structures/drug effects , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Bombyx/drug effects , Bombyx/metabolism , Glucose/analysis , Hemolymph/drug effects , Hemolymph/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Larva/drug effects , Lysosomes/drug effects , Lysosomes/metabolism , Metamorphosis, Biological/drug effects , Organ Size/drug effects , Osmotic Pressure/drug effects , Proteasome Endopeptidase Complex/metabolism , Signal Transduction/drug effects , Ubiquitin/metabolism
9.
Syst Parasitol ; 88(1): 75-83, 2014 May.
Article in English | MEDLINE | ID: mdl-24711114

ABSTRACT

A new combination and a new species of onchobothriid tapeworm are described from triakid sharks. We found Platybothrium xiamenensis Wang & Yang, 2001 and Erudituncus musteli (Yamaguti, 1952) from Hemitriakis japanica (Müller & Henle). Based on the morphology of the hooks P. xiamenensis is transferred to the genus Erudituncus Healy, Scholz & Caira, 2001. The specimens studied by us differ from the original description in the number of proglottids and testes and in the size of the cirrus-sac. However, we consider them conspecific with E. xiamenensis due to the consistent hook morphology and laciniations in both descriptions and believe the differences reflect intraspecific variation. The type-host of E. xiamenensis was reported as Mustelus griseus Pietschmann. However, in the present study, this parasite was found only in H. japanica and never in M. griseus although many specimens of the latter host were examined. This suggests that the type-host in the original description has probably been misidentified. We found another undescribed species in M. griseus, Calliobothrium shirozame n. sp., which is distinguished from the congeners by having a unique combination of the number of laciniations: four in the cephalic peduncle, six in the immature proglottids and four in the mature proglottids.


Subject(s)
Cestoda/anatomy & histology , Cestoda/classification , Cestode Infections/veterinary , Fish Diseases/parasitology , Sharks/parasitology , Animals , Cestode Infections/parasitology , Host-Parasite Interactions , Species Specificity
10.
FEBS J ; 281(4): 1046-56, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24373358

ABSTRACT

The existence of fish-specific isoforms of interferon (IFN)γ, known as IFNγ-related (IFNγrel), has been reported in several fish species. However, comparisons with deduced amino acid sequences of known IFNγrels among several fish species have indicated significant differences at the C-terminus basic amino acid continuous sequences, which indicate the existence of multiple IFNγrel isoforms. Two distinct cDNAs, encoding two IFNγrels, ifngrel 1 and ifngrel 2, were cloned from ginbuna crucian carp (Carassius auratus langsdorfii). Recombinant IFNγrel 1 and IFNγrel 2 have shown high antiviral activities against the lethal crucian carp hematopoietic necrosis virus. Both ligands exhibit biological activity as monomers despite the fact that the functional conformation of IFNγ is a homodimer. Both interferons have a high degree of sequence similarity, but differ in the C-terminus region. In this region, IFNγrel 1 contains a functional nuclear localization sequence which induces the translocation of green fluorescent protein from the cytoplasm to the nucleus. IFNγrel 2 lacks this sequence. These results indicate that IFNγrel 1 and IFNγrel 2 are functional antiviral cytokines. These structurally related ligands play distinct antiviral roles through different intracellular translocation mechanisms. Thus, IFNγrels form a novel, distinct subtype included in type II IFNs. The cyprinid fish IFNγ subtype currently consists of four members, including two IFNγ isoforms and two distinct additional IFNγrel isoforms specific to the fish.


Subject(s)
Antiviral Agents/chemistry , Carps/metabolism , Fish Proteins/metabolism , Animals , Antiviral Agents/pharmacology , Infectious hematopoietic necrosis virus/drug effects , Interferon-gamma/chemistry , Interferon-gamma/pharmacology
11.
J Biochem ; 150(6): 635-48, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21903635

ABSTRACT

Fish genomes possess three type II interferon (IFN) genes, ifnγ1, ifnγ2 and ifnγ-related (ifnγrel). The IFNγ-dependent STAT signalling pathway found in humans and mice had not been characterized in fish previously. To identify the antiviral functions and signalling pathways of the type II IFN system in fish, we purified the ifnγ1, ifnγ2 and ifnγrel proteins of ginbuna crucian carp expressed in bacteria and found them to elicit high antiviral activities against crucian carp hematopoietic necrosis virus. We also cloned two distinct ifnγ receptor alpha chain (ifngr1) isoforms, 1 and 2, and stably expressed them in HeLa cells by transfecting the cells with ifngr1-1 or ifngr1-2 cDNA. When receptor transfectants were treated with the ligands in a one-ligand-one-receptor manner (ifnγ1 and ifngr1-2 or ifnγ2 and ifngr1-1), the stat1 protein was phosphorylated at both serine-727 and tyrosine-701 residues. Gel shift mobility analysis and reporter assay clearly showed that the specific ligand-receptor interaction resulted in the binding of the stat1 protein to the GAS element and enhanced transcription. Therefore, the actions of ifnγ1 and ifnγ2 were found to be mediated by a specific receptor for each signalling pathway via a stat1-dependent mechanism.


Subject(s)
Antiviral Agents/pharmacology , Carps/immunology , Interferon-gamma/immunology , Novirhabdovirus/drug effects , Amino Acid Sequence , Animals , Carps/genetics , Carps/metabolism , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Reporter , HeLa Cells , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Molecular Sequence Data , Novirhabdovirus/immunology , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/virology , STAT1 Transcription Factor/metabolism , Signal Transduction , Transcription, Genetic , Transcriptional Activation , Transfection , Interferon gamma Receptor
12.
Syst Parasitol ; 75(2): 117-24, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20119704

ABSTRACT

Calicotyle japonica n. sp., collected from the uterus, rectal gland, archinephric duct and cloaca of the shortspine spurdog Squalus mitsukurii Jordan & Snyder (Squaliformes) off the Pacific coast of Japan, is described. The new species can be distinguished from C. inermis Woolcock, 1936 by the shape of the male copulatory organ; in C. japonica this is directed anteriorly, is sharply bent in the middle and then increases in width toward the tip, whereas it is long, coiled and uniform in width throughout its entire length in C. inermis. Furthermore, the intestinal caeca have many irregular diverticula on both sides and the vaginal apertures are at the level of the common genital pore in C. japonica, whereas in C. inermis the intestine is smooth and the vaginae open at the level of the oötype. A phylogeny constructed using LSU rDNA data indicates that the new species is grouped with other Calicotyle species; based on this, Gymnocalicotyle Nybelin, 1941 is synonymised with Calicotyle Diesing, 1850. Calicotyle is divided into two major clades, with the new species being grouped with Calicotyle species infecting sharks and the second clade consisting of Calicotyle spp. infecting rays. This suggests that the loss of the hamuli in C. japonica and C. inermis, both parasites of sharks, is a comparatively recent event in the evolution of the genus.


Subject(s)
Platyhelminths/classification , Platyhelminths/isolation & purification , Squalus/parasitology , Animals , Cloaca/parasitology , Cluster Analysis , DNA, Helminth/chemistry , DNA, Helminth/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Japan , Male , Microscopy , Molecular Sequence Data , Pacific Ocean , Phylogeny , Platyhelminths/anatomy & histology , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNA , Uterus/parasitology
13.
Gen Comp Endocrinol ; 151(1): 42-54, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17222841

ABSTRACT

Growth hormone (GH) transgenic amago salmon (Oncorhynchus masou) were generated with a construct containing the sockeye salmon GH1 gene fused to the metallothionein-B (MT-B) promoter from the same species. This transgene directed significant growth enhancement with transgenic fish reaching approximately four to five times greater weight than control salmon in F(2) and F(3) generations. This drastic growth enhancement by GH transgene is well known in fish species compared with mammals, however, such fish can show morphological abnormalities and physiological disorders like other GH transgenic animals. GH is known to have many acute effects, but currently there are no data describing the chronic effects of over-expression of GH on various hepatic genes in GH transgenic fish. Hepatic gene expression is anticipated to play very important roles in many physiological functions and growth performance of transgenic and control salmon. To examine these effects, we performed subtractive hybridization (using cDNA generated from liver RNA) in both directions to identify genes both increased and decreased in transgenic salmon relative to controls (576 clones were isolated and sequenced in total). Heme oxygenase, vitelline envelope protein, Acyl-coA binding protein, NADH dehydrogenase, mannose binding lectin-associated serine protease, hemopexin-like protein, leucyte-derived chemotaxin2 (LECT2), and many other genes were obtained in higher clone frequencies suggesting enhanced expression. In contrast, complement C3-1, lectin, rabin, alcohol dehydrogenase, Tc1-like transposase, Delta6-desaturase, and pentraxin genes were obtained in lower frequencies. Microarray analysis was also performed to obtain quantitative expression data for these subtracted cDNA clones. Analysis of fish across seasons was also conducted using both F(2) and F(3) salmon. Results of the microarray data essentially corresponded with those of the subtraction data when both F(2) and F(3) fish were completely immature, but the expression pattern was changed when fish approached maturation. Genes showing enhanced expression in GH transgenic fish in F(2) and F(3) by array analysis were vitelline envelope protein, hemopexin-like protein, heme-oxygenase, inter alpha-trypsin inhibitor, LECT2, GTP cyclohydrolase I feedback regulatory protein (GFRP), and bikunin. Reduced expression genes were lectin, Delta6-desaturase, apolipoprotein, and pentraxin. In particular, lectin was found to be highly suppressed in all F(2) and immature F(3) salmon. Further, serum lysozyme activity, one of innate immunity, was significantly (p<0.05) decreased in both F(2) and F(3) GH transgenic fish. These results indicate that the GH transgene fish had altered hepatic gene expression relating to iron-metabolism, innate immunity, reproduction, and growth.


Subject(s)
Gene Expression Profiling , Growth Hormone/genetics , Liver/metabolism , Oligonucleotide Array Sequence Analysis/methods , Salmon/genetics , Animals , Animals, Genetically Modified , Blotting, Northern , Cluster Analysis , DNA, Complementary/genetics , Growth Hormone/physiology , Immunity, Innate/genetics , Iron/metabolism , Liver/immunology , Muramidase/blood , Salmon/immunology , Salmon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...