Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Direct ; 8(5): e594, 2024 May.
Article in English | MEDLINE | ID: mdl-38799417

ABSTRACT

The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.

2.
Life (Basel) ; 13(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36836647

ABSTRACT

The stomata on leaf surfaces control gas exchange and water loss, closing during dry periods to conserve water. The distribution and size of stomatal complexes is determined by epidermal cell differentiation and expansion during leaf growth. Regulation of these processes in response to water deficit may result in stomatal anatomical plasticity as part of the plant acclimation to drought. We quantified the leaf anatomical plasticity under water-deficit conditions in maize and soybean over two experiments. Both species produced smaller leaves in response to the water deficit, partly due to the reductions in the stomata and pavement cell size, although this response was greater in soybean, which also produced thicker leaves under severe stress, whereas the maize leaf thickness did not change. The stomata and pavement cells were smaller with the reduced water availability in both species, resulting in higher stomatal densities. Stomatal development (measured as stomatal index, SI) was suppressed in both species at the lowest water availability, but to a greater extent in maize than in soybean. The result of these responses is that in maize leaves, the stomatal area fraction (fgc) was consistently reduced in the plants grown under severe but not moderate water deficit, whereas the fgc did not decrease in the water-stressed soybean leaves. The water deficit resulted in the reduced expression of one of two (maize) or three (soybean) SPEECHLESS orthologs, and the expression patterns were correlated with SI. The vein density (VD) increased in both species in response to the water deficit, although the effect was greater in soybean. This study establishes a mechanism of stomatal development plasticity that can be applied to other species and genotypes to develop or investigate stomatal development plasticity.

3.
Sci Rep ; 9(1): 12282, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31439865

ABSTRACT

Calcium (Ca2+) signals are decoded by the Ca2+-sensor protein calmodulin (CaM) and are transduced to Ca2+/CaM-binding transcription factors to directly regulate gene expression necessary for acclimation responses in plants. The molecular mechanisms of Ca2+/CaM signal transduction processes and their functional significance remains enigmatic. Here we report a novel Ca2+/CaM signal transduction mechanism that allosterically regulates DNA-binding activity of GT2-LIKE 1 (GTL1), a transrepressor of STOMATAL DENSITY AND DISTRIBUTION 1 (SDD1), to repress stomatal development in response to water stress. We demonstrated that Ca2+/CaM interaction with the 2nd helix of the GTL1 N-terminal trihelix DNA-binding domain (GTL1N) destabilizes a hydrophobic core of GTL1N and allosterically inhibits 3rd helix docking to the SDD1 promoter, leading to osmotic stress-induced Ca2+/CaM-dependent activation (de-repression) of SDD1 expression. This resulted in GTL1-dependent repression of stomatal development in response to water-deficit stress. Together, our results demonstrate that a Ca2+/CaM-regulated transcriptional switch on a trihelix transrepressor directly transduces osmotic stress to repress stomatal development to improve plant water-use efficiency as an acclimation response.


Subject(s)
Arabidopsis/metabolism , Calcium Signaling , Calcium/metabolism , Calmodulin/metabolism , Plant Stomata/growth & development , Transcription, Genetic , Water/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Calmodulin/genetics , Plant Stomata/genetics , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics
4.
Plant Biotechnol J ; 14(3): 976-85, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26285603

ABSTRACT

We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Biomass , Plant Oils/metabolism , Seeds/growth & development , Starch/metabolism , 1,4-alpha-Glucan Branching Enzyme/metabolism , Chloroplasts/enzymology , Endosperm/metabolism , Gene Expression Regulation, Plant , Genetic Complementation Test , Phenotype , Plant Leaves/metabolism , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seeds/metabolism , Transformation, Genetic , Transgenes , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...