Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 340: 47-56, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34481001

ABSTRACT

Low production rates are still one limiting factor for the industrial climate-neutral production of biovaluable compounds in cyanobacteria. Next to optimized cultivation conditions, new production strategies are required. Hence, the use of established molecular tools could lead to increased product yields in the cyanobacterial model organism Synechocystis sp. PCC6803. Its main storage compound glycogen was chosen to be increased by the use of these tools. In this study, the three genes glgC, glgA1 and glgA2, which are part of the glycogen synthesis pathway, were combined with the Pcpc560 promoter and the neutral cloning site NSC1. The complete genome integration, protein formation, biomass production and glycogen accumulation were determined to select the most productive transformants. The overexpression of glgA2 did not increase the biomass or glycogen production in short-term trials compared to the other two genes but caused transformants death in long-term trials. The transformants glgA1_11 and glgC_2 showed significantly increased biomass (1.6-fold - 1.7-fold) and glycogen production (3.5-fold - 4-fold) compared to the wild type after 96 h making them a promising energy source for further applications. Those could include for example a two-stage production process, with first energy production (glycogen) and second increased product formation (e.g. ethanol).


Subject(s)
Synechocystis , Glycogen , Synechocystis/genetics
2.
Folia Microbiol (Praha) ; 64(5): 627-644, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31352666

ABSTRACT

The worldwide growing demand for energy permanently increases the pressure on industrial and scientific community to introduce new alternative biofuels on the global energy market. Besides the leading role of biodiesel and biogas, bioethanol receives more and more attention as first- and second-generation biofuel in the sustainable energy industry. Lately, microalgae (green algae and cyanobacteria) biomass has also remarkable potential as a feedstock for the third-generation biofuel production due to their high lipid and carbohydrate content. The third-generation bioethanol production technology can be divided into three major processing ways: (i) fermentation of pre-treated microalgae biomass, (ii) dark fermentation of reserved carbohydrates and (iii) direct "photo-fermentation" from carbon dioxide to bioethanol using light energy. All three technologies provide possible solutions, but from a practical point of view, traditional fermentation technology from microalgae biomass receives currently the most attention. This study mainly focusses on the latest advances in traditional fermentation processes including the steps of enhanced carbohydrate accumulation, biomass pre-treatment, starch and glycogen downstream processing and various fermentation approaches.


Subject(s)
Ethanol/metabolism , Microalgae/metabolism , Polysaccharides/metabolism , Biofuels/analysis , Biotechnology , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...