Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(12): 10306-10320, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38872300

ABSTRACT

Selective inhibition of the RGD (Arg-Gly-Asp) integrin αvß1 has been recently identified as an attractive therapeutic approach for the treatment of liver fibrosis given its function, target expression, and safety profile. Our identification of a non-RGD small molecule lead followed by focused, systematic changes to the core structure utilizing a crystal structure, in silico modeling, and a tractable synthetic approach resulted in the identification of a potent small molecule exhibiting a remarkable affinity for αvß1 relative to several other integrin isoforms measured. Azabenzimidazolone 25 demonstrated antifibrotic efficacy in an in vivo rat liver fibrosis model and represents a tool compound capable of further exploring the biological consequences of selective αvß1 inhibition.


Subject(s)
Drug Design , Receptors, Vitronectin , Animals , Rats , Humans , Receptors, Vitronectin/antagonists & inhibitors , Receptors, Vitronectin/metabolism , Structure-Activity Relationship , Liver Cirrhosis/drug therapy , Models, Molecular , Drug Discovery , Rats, Sprague-Dawley , Male , Crystallography, X-Ray , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis
2.
Stem Cell Res ; 14(3): 258-69, 2015 May.
Article in English | MEDLINE | ID: mdl-25765520

ABSTRACT

There are currently no reports of identification of stem cells in human gallbladder. The differences between human gallbladder and intrahepatic bile duct (IHBD) cells have also not been explored. The goals of this study were to evaluate if human fetal gallbladder contains a candidate stem cell population and if fetal gallbladder cells are distinct from fetal IHBD cells. We found that EpCAM+CD44+CD13+ cells represent the cell population most enriched for clonal self-renewal from primary gallbladder. Primary EpCAM+CD44+CD13+ cells gave rise to EpCAM+CD44+CD13+ and EpCAM+CD44+CD13- cells in vitro, and gallbladder cells expanded in vitro exhibited short-term engraftment in vivo. Last, we found that CD13, CD227, CD66, CD26 and CD49b were differentially expressed between gallbladder and IHBD cells cultured in vitro indicating clear phenotypic differences between the two cell populations. Microarray analyses of expanded cultures confirmed that both cell types have unique transcriptional profiles with predicted functional differences in lipid, carbohydrate, nucleic acid and drug metabolism. In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.


Subject(s)
Bile Ducts, Intrahepatic/cytology , Gallbladder/cytology , Stem Cells/cytology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Biomarkers/metabolism , CD13 Antigens/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cell Self Renewal , Cells, Cultured , Epithelial Cell Adhesion Molecule , Gallbladder/embryology , Gene Expression Profiling , Humans , Hyaluronan Receptors/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype
3.
Science ; 344(6184): 649-52, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24797481

ABSTRACT

Parabiosis experiments indicate that impaired regeneration in aged mice is reversible by exposure to a young circulation, suggesting that young blood contains humoral "rejuvenating" factors that can restore regenerative function. Here, we demonstrate that the circulating protein growth differentiation factor 11 (GDF11) is a rejuvenating factor for skeletal muscle. Supplementation of systemic GDF11 levels, which normally decline with age, by heterochronic parabiosis or systemic delivery of recombinant protein, reversed functional impairments and restored genomic integrity in aged muscle stem cells (satellite cells). Increased GDF11 levels in aged mice also improved muscle structural and functional features and increased strength and endurance exercise capacity. These data indicate that GDF11 systemically regulates muscle aging and may be therapeutically useful for reversing age-related skeletal muscle and stem cell dysfunction.


Subject(s)
Aging/physiology , Bone Morphogenetic Proteins/physiology , Growth Differentiation Factors/physiology , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Myoblasts, Skeletal/physiology , Regeneration , Rejuvenation , Age Factors , Aging/blood , Aging/drug effects , Animals , Bone Morphogenetic Proteins/administration & dosage , Bone Morphogenetic Proteins/blood , Growth Differentiation Factors/administration & dosage , Growth Differentiation Factors/blood , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Myoblasts, Skeletal/drug effects , Parabiosis
4.
PLoS One ; 8(12): e84149, 2013.
Article in English | MEDLINE | ID: mdl-24376789

ABSTRACT

The transition of Drosophila third instar larvae from feeding, photo-phobic foragers to non-feeding, photo-neutral wanderers is a classic behavioral switch that precedes pupariation. The neuronal network responsible for this behavior has recently begun to be defined. Previous genetic analyses have identified signaling components for food and light sensory inputs and neuropeptide hormonal outputs as being critical for the forager to wanderer transition. Trio is a Rho-Guanine Nucleotide Exchange Factor integrated into a variety of signaling networks including those governing axon pathfinding in early development. Sequoia is a pan-neuronally expressed zinc-finger transcription factor that governs dendrite and axon outgrowth. Using pre-pupal lethality as an endpoint, we have screened for dominant second-site enhancers of a weakly lethal trio mutant background. In these screens, an allele of sequoia has been identified. While these mutants have no obvious disruption of embryonic central nervous system architecture and survive to third instar larvae similar to controls, they retain forager behavior and thus fail to pupariate at high frequency.


Subject(s)
Alleles , Behavior, Animal , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Guanine Nucleotide Exchange Factors/genetics , Mutation , Nerve Tissue Proteins/genetics , Phenotype , Phosphoproteins/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Female , Larva/genetics , Male , Pupa/genetics
5.
Hepatology ; 54(5): 1830-41, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21793026

ABSTRACT

UNLABELLED: The identification of resident stem cells in the mouse gallbladder is, to date, unexplored. In addition, the relationship between adult gallbladder stem cells and intrahepatic bile duct (IHBD) cells is not well understood. The aim of this study was to isolate stem cells from an adult mouse gallbladder and determine whether they were unique, compared to IHBD cells. By limiting dilution analyses and index sorts, we found that an EpCAM(+) CD49f(hi) epithelial cell subpopulation from primary gallbladder is enriched in colony-forming cells, compared to EpCAM(+) CD49f(lo) cells. EpCAM(+) CD49f(hi) cells expressed cluster of differentiation (CD)29, CD133, and stem cell antigen-1, but were negative for lineage markers CD31, CD45, and F4/80. Using a novel feeder cell-culture system, we observed long-term (>passage 20) and clonal expansion of the EpCAM(+) CD49f(hi) cells in vitro. In a matrigel differentiation assay, EpCAM(+) CD49f(+) cells expanding in vitro underwent organotypic morphogenesis forming ductular structures and cysts. These structures are similar to, and recapitulate a transport function of, primary gallbladder. EpCAM(+) CD49f(+) cells also engraft into the subcutaneous space of recipient mice. We compared primary gallbladder and IHBD cells by flow cytometry and found phenotypic differences in the expression of CD49f, CD49e, CD81, CD26, CD54, and CD166. In addition, oligonucleotide microarrays showed that the expanded EpCAM(+) CD49f(+) gallbladder cells and IHBD cells exhibit differences related to lipid and drug metabolism. Notable genes that were different are cytochrome P450, glutathione S-transferase, Indian hedgehog, and solute carrier family genes. CONCLUSION: We have isolated an epithelial cell population from primary mouse gallbladder with stem cell characteristics and found it to be unique, compared to IHBD cells.


Subject(s)
Adult Stem Cells/cytology , Gallbladder/cytology , Stem Cell Niche/physiology , Adult Stem Cells/metabolism , Age Factors , Animals , Antigens, Neoplasm/metabolism , Bile Ducts, Intrahepatic/cytology , Biomarkers/metabolism , Cell Adhesion Molecules/metabolism , Cell Differentiation/physiology , Cell Separation/methods , Cells, Cultured , Epithelial Cell Adhesion Molecule , Epithelial Cells/cytology , Epithelial Cells/metabolism , Green Fluorescent Proteins/genetics , Integrin alpha6/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
6.
Gastroenterology ; 140(2): 656-666.e2, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21070777

ABSTRACT

BACKGROUND & AIMS: Hepatocyte transplantation is a potential therapeutic approach for liver disease. However, most patients with chronic hepatic damage have cirrhosis and fibrosis, which limit the potential for cell-based therapy of the liver. The development of an ectopic liver as an additional site of hepatic function represents a new approach for patients with end-stage liver disease. We investigated the development and function of liver tissue in lymph nodes in mice with liver failure. METHODS: Hepatocytes were isolated from 8- to 12-week-old mice and transplanted by intraperitoneal injection into 8- to 12-week-old fumarylacetoacetate hydrolase mice (Fah(-/-)), a model of the human liver disease tyrosinemia type I. Survival was monitored and the locations and functions of the engrafted liver cells were determined. RESULTS: Lymph nodes of Fah(-/-) mice were colonized by transplanted hepatocytes; Fah(+) hepatocytes were detected adjacent to the CD45(+) lymphoid cells of the lymphatic system. Ten weeks after transplantation, these mice had substantial improvements in serum levels of transaminases, bilirubin, and amino acids. Homeostatic expansion of donor hepatocytes in lymph nodes rescued the mice from lethal hepatic failure. CONCLUSIONS: Functional ectopic liver tissue in lymph nodes rescues mice from lethal hepatic disease; lymph nodes therefore might be used as sites for hepatocyte transplantation.


Subject(s)
Hepatocytes/transplantation , Liver Failure/surgery , Lymph Nodes/physiology , Amino Acids/blood , Animals , Bilirubin/blood , Chronic Disease , Disease Models, Animal , Female , Hydrolases/genetics , Leukocyte Common Antigens/analysis , Liver Failure/etiology , Lymphocytes/physiology , Male , Mice , Mice, Inbred C57BL , Transaminases/blood , Tyrosinemias/complications , Tyrosinemias/genetics , Tyrosinemias/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...