Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Factors ; : 187208231183874, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37387305

ABSTRACT

OBJECTIVE: This study proposed a moving average (MA) approach to dynamically process heart rate variability (HRV) and developed aberrant driving behavior (ADB) prediction models by using long short-term memory (LSTM) networks. BACKGROUND: Fatigue-associated ADBs have traffic safety implications. Numerous models to predict such acts based on physiological responses have been developed but are still in embryonic stages. METHOD: This study recorded the data of 20 commercial bus drivers during their routine tasks on four consecutive days and subsequently asked them to complete questionnaires, including subjective sleep quality, driver behavior questionnaire and the Karolinska Sleepiness Scale. Driving behaviors and corresponding HRV were determined using a navigational mobile application and a wristwatch. The dynamic-weighted MA (DWMA) and exponential-weighted MA were used to process HRV in 5-min intervals. The data were independently separated for training and testing. Models were trained with 10-fold cross-validation strategy, their accuracies were evaluated, and Shapley additive explanation (SHAP) values were used to determine feature importance. RESULTS: Significant increases in the standard deviation of NN intervals (SDNN), root mean square of successive heartbeat interval differences (RMSSD), and normalized spectrum of high frequency (nHF) were observed in the pre-event stage. The DWMA-based model exhibited the highest accuracy for both driver types (urban: 84.41%; highway: 80.56%). The SDNN, RMSSD, and nHF demonstrated relatively high SHAP values. CONCLUSION: HRV metrics can serve as indicators of mental fatigue. DWMA-based LSTM could predict the occurrence of the level of fatigue associated with ADBs. APPLICATION: The established models can be used in realistic driving scenarios.

2.
Int J Occup Saf Ergon ; 29(4): 1429-1439, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36281493

ABSTRACT

Objectives. Current approaches via physiological features detecting aberrant driving behaviour (ADB), including speeding, abrupt steering, hard braking and aggressive acceleration, are developing. This study proposes using machine learning approaches incorporating heart rate variability (HRV) parameters to predict ADB occurrence. Methods. Naturalistic driving data of 10 highway bus drivers in Taiwan from their daily routes were collected for 4 consecutive days. Their driving behaviours and physiological data during a driving task were determined using a navigation mobile application and heart rate watch. Participants' self-reported data on sleep, driving-related experience, open-source data on weather and the traffic congestion level were obtained. Five machine learning models - logistic regression, random forest, naive Bayes, support vector machine and gated recurrent unit (GRU) - were employed to predict ADBs. Results. Most drivers with ADB had low sleep efficiency (≤80%), with significantly higher scores in driver behaviour questionnaire subcategories of lapses and errors and in the Karolinska sleepiness scale than those without ADBs. Moreover, HRV parameters were significantly different between baseline and pre-ADB event measurements. GRU had the highest accuracy (81.16-84.22%). Conclusions. Sleep deficit may be related to the increased fatigue level and ADB occurrence predicted from HRV-based models among bus drivers.


Subject(s)
Automobile Driving , Humans , Accidents, Traffic , Heart Rate/physiology , Pilot Projects , Bayes Theorem , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...