Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(42): 59119-59130, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32506397

ABSTRACT

Commuters are exposed to high air pollution levels daily, especially in areas with dense traffic. This study examines the commuter's exposure to polycyclic aromatic hydrocarbons (PAHs) in the city of Thessaloniki, Greece, under three different commuting modes: biking, travelling by private car, and riding public transportation means (buses). The study was carried out from 2015 to 2018 including 43 volunteers (15 cyclists, 17 car drivers/passengers, and 11 bus passengers). The personal exposure concentrations to particles smaller than 4-µm aerodynamic diameter (PM4), constituting the respirable fraction of total airborne particles, and the associated PAHs were assessed for each commuting mode during the cold and the warm period of the year. Whereas the exposure of bus and car passengers to in-cabin PM4 were higher in the cold season, the exposure of cyclists exhibited the opposite seasonality. In all commuting modes, exposure to PAHs was higher in the cold season. In both seasons, exposure concentration followed the order: cyclists > bus passengers > car passengers. The carcinogenic and mutagenic potencies of the exposure PAH concentrations were calculated using Benzo[a]pyrene (BaP) carcinogenic and mutagenic equivalency factors. The inhalation cancer risk (ICR) associated to PAHs was further estimated and compared between the different commuting modes. Our data can provide relevant information for transport decision-making and increase environmental awareness for a more rational approach to urban travelling.


Subject(s)
Air Pollutants , Air Pollution , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Environmental Exposure/analysis , Environmental Monitoring , Greece , Humans , Motor Vehicles , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Transportation
2.
Sci Total Environ ; 553: 392-403, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26930313

ABSTRACT

Combining chemical and physical-structural information of particles is a key issue in PM investigations. Chemical, mineralogical, and morphological characterization of quasi-ultrafine particles (PM 0.49) was carried out at two urban sites of varying traffic-influence (roadside and urban background) in Thessaloniki, northern Greece, during the cold and the warm period of 2013. Bulk analyses of chemical species included organic and elemental carbon (OC, EC), water soluble organic carbon (WSOC), ionic species (NO3(-), SO4(2-), Cl(-), Na(+), NH4(+), K(+), Mg(2+), Ca(2+)) and trace elements (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn, Pt, Pd, Rh, Ru, and Ir). X-ray diffractometry (XRD) was employed for the mineralogical analysis of PM 0.49 in order to identify and quantify amorphous and crystalline phases. In addition, scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS) was employed for morphological characterization and elemental microanalysis of individual particles. Findings of this work could provide the basis for designing epidemiological and toxicity studies to mitigate population exposure to UFPs.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Greece , Particle Size , Seasons
3.
Environ Pollut ; 208(Pt B): 774-86, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26586634

ABSTRACT

Chemical and toxicological characterization of the water-soluble fraction of size-segregated urban particulate matter (PM) (<0.49, 0.49-0.97, 0.97-1.5, 1.5-3.0, 3.0-7.2 and >7.2 µm) was carried out at two urban sites, traffic and urban background, during the cold and the warm period. Chemical analysis of the water-soluble PM fraction included ionic species (NO3(-), SO4(2-), Cl(-), Na(+), NH4(+), K(+), Mg(2+), Ca(2+)), water-soluble organic carbon (WSOC), and trace elements (Al, As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn, Pt, Pd, Rh, Ru, Ir, Ca, and Mg). The dithiothreitol (DTT) assay was employed for the abiotic assessment of the oxidative PM activity. Cytotoxic responses were investigated in vitro by applying the mitochondrial dehydrogenase (MTT) and the lactate dehydrogenase (LDH) bioassays on human lung cells (MRC-5), while DNA damage was estimated by the single cell gel electrophoresis assay, known as Comet assay. The correlations between the observed bioactivity responses and the concentrations of water-soluble chemical PM constituents in the various size ranges were investigated. The results of the current study corroborate that short-term bioassays using lung human cells and abiotic assays, such as the DTT assay, could be relevant to complete the routine chemical analysis and to obtain a preliminary screening of the potential effects of PM-associated airborne pollutants on human health.


Subject(s)
Air Pollutants/chemistry , Environmental Monitoring , Particulate Matter/chemistry , Air Pollutants/analysis , Air Pollutants/pharmacology , Cell Line , Chemical Fractionation , Comet Assay , DNA Damage , Humans , Oxidation-Reduction , Particle Size , Particulate Matter/analysis , Particulate Matter/pharmacology , Water/chemistry
4.
Environ Sci Pollut Res Int ; 23(4): 3556-68, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26490935

ABSTRACT

Thirteen particle-phase PAHs, including nine >4-ring congeners [Benz[a]anthracene (BaAn), Chrysene (Chry), Benzo[b]fluoranthene (BbF), Benzo[k]fluoranthene (BkF), Benzo[e]pyrene (BeP), Benzo[a]pyrene (BaP), Dibenzo[a,h]anthracene (dBaAn), Benzo[g,h,i]perylene (BghiPe), Indeno(1,2,3-c,d)pyrene (IP)], listed by IARC (International Agency for Research on Cancer) as class 1, class 2A, and 2B carcinogens, plus four ≤ 4-ring congeners [Phenanthrene (Ph), Anthracene (An), Fluoranthene (Fl), Pyrene (Py)], were concurrently measured in inhalable and respirable particle fractions (PM10 and PM2.5) at a heavy-traffic and an urban background site in Thessaloniki, northern Greece, during the warm and the cold period of the year. Carcinogenic and mutagenic potencies of the PAH-bearing particles were calculated, and the inhalation cancer risk (ICR) for local population was estimated. Finally, Chemical Mass Balance (CMB) modeling was employed for the source apportionment of ambient PAH levels and the estimated lung cancer risk. Resulted inhalation cancer risk during winter was found to be equivalent in the city center and the urban background area suggesting that residential wood burning may offset the benefits from minor traffic emissions.


Subject(s)
Air Pollutants/analysis , Inhalation Exposure/analysis , Lung Neoplasms , Polycyclic Aromatic Hydrocarbons/analysis , Urban Population , Vehicle Emissions/analysis , Air Pollutants/toxicity , Greece , Housing , Humans , Inhalation Exposure/adverse effects , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , Polycyclic Aromatic Hydrocarbons/toxicity , Risk , Seasons , Vehicle Emissions/toxicity
5.
Environ Sci Pollut Res Int ; 21(12): 7708-22, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24627204

ABSTRACT

Concentrations and chemical composition of the coarse particle fraction (PMc) were investigated at two urban sites in the city of Thessaloniki, Greece, through concurrent sampling of PM10 and PM2.5 during the warm and the cold months of the year. PMc levels at the urban-traffic site (UT) were among the highest found in literature worldwide exhibiting higher values in the cold period. PMc levels at the urban-background site (UB) were significantly lower exhibiting a reverse seasonal trend. Concentration levels of minerals and most trace metals were also higher at the UT site suggesting a stronger impact from traffic-related sources (road dust resuspension, brake and tire abrasion, road wear). According to the chemical mass closure obtained, minerals (oxides of Si, Al, Ca, Mg, Fe, Ti, and K) dominated the PMc profile, regardless of the site and the period, with organic matter and secondary inorganic aerosols (mainly nitrate) also contributing considerably to the PMc mass, particularly in the warm period. The influence of wind speed to dilution and/or resuspension of coarse particles was investigated. The source of origin of coarse particles was also investigated using surface wind data and atmospheric back-trajectory modeling. Finally, the contribution of resuspension to PMc levels was estimated for air quality management perspectives.


Subject(s)
Air Pollutants/chemistry , Particulate Matter/chemistry , Vehicle Emissions/analysis , Aerosols/analysis , Aerosols/chemistry , Air Pollutants/analysis , Cities , Dust/analysis , Environmental Monitoring/methods , Greece , Nitrates/analysis , Nitrates/chemistry , Nitrogen Oxides/analysis , Nitrogen Oxides/chemistry , Particle Size , Particulate Matter/analysis , Trace Elements/analysis , Trace Elements/chemistry , Weather
6.
Environ Sci Technol ; 47(23): 13313-20, 2013.
Article in English | MEDLINE | ID: mdl-24187932

ABSTRACT

The recent economic crisis in Greece resulted in a serious wintertime air pollution episode in Thessaloniki. This air quality deterioration was mostly due to the increased price of fuel oil, conventionally used as a source of energy for domestic heating, which encouraged the residents to burn the less expensive wood/biomass during the cold season. A wintertime sampling campaign for fine particles (PM2.5) was conducted in Thessaloniki during the winters of 2012 and 2013 in an effort to quantify the extent to which the ambient air was impacted by the increased wood smoke emissions. The results indicated a 30% increase in the PM2.5 mass concentration as well as a 2-5-fold increase in the concentration of wood smoke tracers, including potassium, levoglucosan, mannosan, and galactosan. The concentrations of fuel oil tracers (e.g., Ni and V), on the other hand, declined by 20-30% during 2013 compared with 2012. Moreover, a distinct diurnal variation was observed for wood smoke tracers, with significantly higher concentrations in the evening period compared with the morning. Correlation analysis indicated a strong association between reactive oxygen species (ROS) activity and the concentrations of levoglucosan, galactosan, and potassium, underscoring the potential impact of wood smoke on PM-induced toxicity during the winter months in Thessaloniki.


Subject(s)
Air Pollution/analysis , Economic Recession/history , Environmental Monitoring/statistics & numerical data , Fires , Heating , Particulate Matter/analysis , Seasons , Wood , Air Pollutants/analysis , Environmental Monitoring/methods , Galactose/analogs & derivatives , Galactose/analysis , Glucose/analogs & derivatives , Glucose/analysis , Greece , History, 21st Century , Mannose/analogs & derivatives , Mannose/analysis , Smoke/analysis
7.
Sci Total Environ ; 432: 12-22, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22705902

ABSTRACT

Ambient concentrations of PM(10) and associated major and trace elements were measured over the cold and the warm season of 2007 at two sites located in the Rhodes Island (Greece), in Eastern Mediterranean, aimed at source apportionment by Chemical Mass Balance (CMB) receptor modeling. Source chemical profiles, necessary in CMB modeling, were obtained for a variety of emission sources that could possibly affect the study area, including sea spray, geological material, soot emissions from the nearby oil-fuelled thermal power plant, and other anthropogenic activities, such as vehicular traffic, residential oil combustion, wood burning, and uncontrolled open-air burning of agricultural biomass and municipal waste. Source apportionment of PM(10) and elemental components was carried out by employing an advanced CMB version, the Robotic Chemical Mass Balance model (RCMB). Vehicular emissions were found to be major PM(10) contributor accounting, on average, for 36.8% and 31.7% during the cold period, and for 40.9% and 39.2% in the warm period at the two sites, respectively. The second largest source of ambient PM(10), with minor seasonal variation, was secondary sulfates (mainly ammonium and calcium sulfates), with total average contribution around 16.5% and 18% at the two sites. Soil dust was also a remarkable source contributing around 22% in the warm period, whereas only around 10% in the cold season. Soot emitted from the thermal power plant was found to be negligible contributor to ambient PM(10) (<1%), however it appeared to appreciably contribute to the ambient V and Ni (11.3% and 5.1%, respectively) at one of the sites during the warm period, when electricity production is intensified. Trajectory analysis did not indicate any transport of Sahara dust; on the contrary, long range transport of soil dust from arid continental regions of Minor Asia and of biomass burning aerosol from the countries surrounding the Black Sea was considered possible.

8.
Environ Int ; 34(2): 210-25, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17900688

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), including hexaclorocyclohexanes (HCHs) and DDTs, as well as trace elements were determined in soil and vegetation samples collected from the surrounding area of the landfill "Tagarades", the biggest in northern Greece, following a large scale fire involving approximately 50,000 tons of municipal waste. High concentrations of total PAHs, PCBs and heavy metals were found inside the landfill (1475 microg kg(-1) dw, 399 microg kg(-1) dw and 29.8 mg kg(-1) dw, respectively), whereas concentrations in the surrounding soils were by far lower ranging between 11.2-28.1 microg kg(-1) dw for PAHs, 4.02-11.2 microg kg(-1) dw for PCBs and 575-1207 mg kg(-1) dw for heavy metals. The distribution of HCHs and DDTs were quite different since certain soils exhibited equal or higher concentrations than the landfill. In vegetation, the concentrations of PAHs, PCBs, HCHs and DDTs ranged from 14.1-34.7, 3.64-25.9, 1.41-32.1 and 0.61-4.03 microg kg(-1) dw, respectively, while those of heavy metals from 81 to 159 mg kg(-1) dw. The results of the study indicated soil and vegetation pollution levels in the surroundings of the landfill comparable to those reported for other Greek locations. The impact from the landfill fire was not evident partially due to the presence of recent and past inputs from other activities (agriculture, vehicular transport, earlier landfill fires).


Subject(s)
Fires , Plants/metabolism , Refuse Disposal , Soil Pollutants/analysis , Environmental Monitoring , Greece , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/metabolism , Metals, Heavy/analysis , Metals, Heavy/metabolism , Pesticides/analysis , Pesticides/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Selenium/analysis , Selenium/metabolism , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...