Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37631111

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae, is a soilborne disease of crucifers associated with the formation of large root galls. This root enlargement suggests modulation of plant hormonal networks by the pathogen, stimulating cell division and elongation and influencing host defense. We studied physiological changes in two Brassica napus cultivars, including plant hormone profiles-salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), the auxin indole-3-acetic acid (IAA), and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-along with their selected derivatives following inoculation with virulent and avirulent P. brassicae pathotypes. In susceptible plants, water uptake declined from the initial appearance of root galls by 21 days after inoculation, but did not have a significant effect on photosynthetic rate, stomatal conductance, or leaf chlorophyll levels. Nonetheless, a strong increase in ABA levels indicated that hormonal mechanisms were triggered to cope with water stress due to the declining water uptake. The free SA level in the roots increased strongly in resistant interactions, compared with a relatively minor increase during susceptible interactions. The ratio of conjugated SA to free SA was higher in susceptible interactions, indicating that resistant interactions are linked to the plant's ability to maintain higher levels of bioactive free SA. In contrast, JA and its biologically active form JA-Ile declined up to 7-fold in susceptible interactions, while they were maintained during resistant interactions. The ACC level increased in the roots of inoculated plants by 21 days, irrespective of clubroot susceptibility, indicating a role of ethylene in response to pathogen interactions that is independent of disease severity. IAA levels at early and later infection stages were lower only in susceptible plants, suggesting a modulation of auxin homeostasis by the pathogen relative to the host defense system.

2.
Plant Dis ; 105(1): 43-52, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33107783

ABSTRACT

Clubroot, caused by Plasmodiophora brassicae Woronin, is an important disease of canola (Brassica napus L.) that is managed mainly by planting clubroot-resistant (CR) cultivars. Field isolates of P. brassicae can be heterogeneous mixtures of various pathotypes, making assessments of the genetics of host-pathogen interactions challenging. Thirty-four single-spore isolates were obtained from nine field isolates of the pathogen collected from CR canola cultivars. The virulence patterns of the single-spore and field isolates were assessed on the 13 host genotypes of the Canadian Clubroot Differential (CCD) set, which includes the differentials of Williams and Somé et al. Indices of disease (IDs) severity of 25, 33, and 50% (±95% confidence interval) were compared as potential thresholds to distinguish between resistant and susceptible reactions, with an ID of 50% giving the most consistent responses for pathotype classification purposes. With this threshold, 13 pathotypes could be distinguished based on the CCD system, 7 on the differentials of Williams, and 3 on the hosts of Somé et al. The highest correlations were observed among virulence matrices generated using the three threshold IDs on the CCD set. Genetically homogeneous single-spore isolates gave a clearer profile of the P. brassicae pathotype structure. Novel pathotypes, not reported in Canada previously, were identified among the isolates. This large collection of single-spore isolates can serve as a reference in screening and breeding for clubroot resistance.


Subject(s)
Brassica napus , Plasmodiophorida , Canada , Plant Diseases , Plasmodiophorida/genetics , Spores, Protozoan , Virulence
3.
Plant Sci ; 300: 110625, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33180705

ABSTRACT

Infection of plants by pathogens can result in the upregulation of induced defenses; plants may be more or less susceptible to attack by insect herbivores following infection. We investigated the interaction between canola, Brassica napus L., plants infected with clubroot, Plasmodiophora brassicae Woronin, and a generalist herbivore the bertha armyworm (BAW) Mamestra configurata Walker using two canola cultivars that varied in susceptibility to clubroot disease. Volatile organic compounds released from experimental plants differed with infection and female adult BAW could discriminate between canola plants inoculated with P. brassicae and disease-free plants. Adult female moths preferentially laid eggs on disease-free plants of the susceptible cultivar to P. brassicae. Inoculation of resistant canola with P. brassicae, however, did not influence oviposition by female BAW. The fitness of BAW larvae was reduced when they were reared on susceptible canola inoculated with P. brassicae. Salicylic acid and its conjugates in susceptible canola plants were induced following P. brassicae inoculation as compared to disease-free susceptible plants. We conclude that suppression of BAW oviposition and offspring fitness may result in part from a change in the volatile profile of the plant as a result of inoculation and the induction of defenses in inoculated susceptible canola.


Subject(s)
Brassica napus/parasitology , Disease Resistance , Herbivory , Lepidoptera/parasitology , Plant Diseases/parasitology , Plant Roots/parasitology , Plasmodiophorida/pathogenicity , Animals , Crops, Agricultural/parasitology , Protozoan Infections
SELECTION OF CITATIONS
SEARCH DETAIL
...