Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826306

ABSTRACT

Background: Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu happens within hours, implicating a machinery with unknown players that controls this process in the acute phase. Methods: We used proximity labeling to identify factors that control seed amplification within 5h of seed exposure. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity 5h after seeded intracellular tau aggregation. Valosin containing protein (VCP/p97) was the top hit. VCP harbors dominant mutations that underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We used immortalized cells and human neurons to study the effects of VCP on tau seeding. We exposed cells to fibrils or brain homogenates in cell culture media and measured effects on uptake and induction of intracellular tau aggregation following various genetic and chemical manipulations of VCP. Results: VCP knockdown reduced tau seeding. Chemical inhibitors had opposing effects on aggregation in HEK293T tau biosensor cells and human neurons alike: ML-240 increased seeding efficiency, whereas NMS-873 decreased it. The inhibitors were effective only when administered within 8h of seed exposure, indicating a role for VCP early in seed processing. We screened 30 VCP co-factors in HEK293T biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. By contrast, reduction of FAF2 increased tau seeding. Conclusions: Divergent effects on tau seeding of chemical inhibitors and cofactor reduction indicate that VCP regulates this process. This is consistent with a dedicated cytoplasmic processing complex based on VCP that directs seeds acutely towards degradation vs. amplification.

2.
bioRxiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37693404

ABSTRACT

Background: Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu can happen within hours. A cellular machinery might regulate this process, but potential players are unknown. Methods: We used proximity labeling to identify factors that control seed amplification. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity upon seeded intracellular tau aggregation. We identified valosin containing protein (VCP/p97) 5h after seeding. Mutations in VCP underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We utilized tau biosensors, a cellular model for tau aggregation, to study the effects of VCP on tau seeding. Results: VCP knockdown reduced tau seeding. However, distinct chemical inhibitors of VCP and the proteasome had opposing effects on aggregation, but only when given <8h of seed exposure. ML-240 increased seeding efficiency ~40x, whereas NMS-873 decreased seeding efficiency by 50%, and MG132 increased seeding ~10x. We screened VCP co-factors in HEK293 biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. Reduction of FAF2 and UBXN6 increased tau seeding. Conclusions: VCP uses distinct cofactors to determine seed replication efficiency, consistent with a dedicated cytoplasmic processing complex that directs seeds towards dissolution vs. amplification.

3.
Acta Neuropathol Commun ; 9(1): 99, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34039426

ABSTRACT

Tau protein forms self-replicating assemblies (seeds) that may underlie progression of pathology in Alzheimer's disease (AD) and related tauopathies. Seeding in recombinant protein preparations and brain homogenates has been quantified with "biosensor" cell lines that express tau with a disease-associated mutation (P301S) fused to complementary fluorescent proteins. Quantification of induced aggregation in cells that score positive by fluorescence resonance energy transfer (FRET) is accomplished by cell imaging or flow cytometry. Several groups have reported seeding activity in antemortem cerebrospinal fluid (CSF) using various methods, but these findings are not yet widely replicated. To address this question, we created two improved FRET-based biosensor cell lines based on tau expression, termed version 2 low (v2L) and version 2 high (v2H). We determined that v2H cells are ~ 100-fold more sensitive to AD-derived tau seeds than our original lines, and coupled with immunoprecipitation reliably detect seeding from samples containing as little as 100 attomoles of recombinant tau fibrils or ~ 32 pg of total protein from AD brain homogenate. We tested antemortem CSF from 11 subjects with a clinical diagnosis of AD, 9 confirmed by validated CSF biomarkers. We used immunoprecipitation coupled with seed detection in v2H cells and detected no tau seeding in any sample. Thus we cannot confirm prior reports of tau seeding activity in the CSF of AD patients. This next generation of ultra-sensitive tau biosensors may nonetheless be useful to the research community to quantify tau pathology as sensitively and specifically as possible.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Biosensing Techniques/methods , Brain/pathology , tau Proteins/cerebrospinal fluid , Aged , Aged, 80 and over , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged
4.
J Biol Chem ; 293(27): 10826-10840, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29752409

ABSTRACT

Transcellular propagation of protein aggregate "seeds" has been proposed to mediate the progression of neurodegenerative diseases in tauopathies and α-synucleinopathies. We previously reported that tau and α-synuclein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface, promoting cellular uptake and intracellular seeding. However, the specificity and binding mode of these protein aggregates to HSPGs remain unknown. Here, we measured direct interaction with modified heparins to determine the size and sulfation requirements for tau, α-synuclein, and ß-amyloid (Aß) aggregate binding to glycosaminoglycans (GAGs). Varying the GAG length and sulfation patterns, we next conducted competition studies with heparin derivatives in cell-based assays. Tau aggregates required a precise GAG architecture with defined sulfate moieties in the N- and 6-O-positions, whereas the binding of α-synuclein and Aß aggregates was less stringent. To determine the genes required for aggregate uptake, we used CRISPR/Cas9 to individually knock out the major genes of the HSPG synthesis pathway in HEK293T cells. Knockouts of the extension enzymes exostosin 1 (EXT1), exostosin 2 (EXT2), and exostosin-like 3 (EXTL3), as well as N-sulfotransferase (NDST1) or 6-O-sulfotransferase (HS6ST2) significantly reduced tau uptake, consistent with our biochemical findings, and knockouts of EXT1, EXT2, EXTL3, or NDST1, but not HS6ST2 reduced α-synuclein uptake. In summary, tau aggregates display specific interactions with HSPGs that depend on GAG length and sulfate moiety position, whereas α-synuclein and Aß aggregates exhibit more flexible interactions with HSPGs. These principles may inform the development of mechanism-based therapies to block transcellular propagation of amyloid protein-based pathologies.


Subject(s)
Amyloid beta-Peptides/chemistry , Glycosaminoglycans/chemistry , Heparan Sulfate Proteoglycans/metabolism , Sulfur/metabolism , Tauopathies/pathology , alpha-Synuclein/metabolism , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , CRISPR-Cas Systems , Glycosaminoglycans/metabolism , Humans , N-Acetylglucosaminyltransferases/antagonists & inhibitors , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Sulfotransferases/antagonists & inhibitors , Sulfotransferases/genetics , Sulfotransferases/metabolism , Tauopathies/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...