Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
HardwareX ; 12: e00363, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36217500

ABSTRACT

Identifying diseases from images of plant leaves is one of the most important research areas in precision agriculture. The aim of this paper is to propose an image detector embedding a resource constrained convolutional neural network (CNN) implemented in a low cost, low power platform, named OpenMV Cam H7 Plus, to perform a real-time classification of plant disease. The CNN network so obtained has been trained on two specific datasets for plant diseases detection, the ESCA-dataset and the PlantVillage-augmented dataset, and implemented in a low-power, low-cost Python programmable machine vision camera for real-time image acquisition and classification, equipped with a LCD display showing to the user the classification response in real-time. Experimental results show that this CNN-based image detector can be effectively implemented on the chosen constrained-resource system, achieving an accuracy of about 98.10%/95.24% with a very low memory cost (718.961 KB/735.727 KB) and inference time (122.969 ms/125.630 ms) tested on board for the ESCA and the PlantVillage-augmented datasets respectively, allowing the design of a portable embedded system for plant leaf diseases classification. Source files are available at https://doi.org/10.17605/OSF.IO/UCM8D.

2.
Sensors (Basel) ; 19(16)2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31412545

ABSTRACT

Wearable devices offer a convenient means to monitor biosignals in real time at relatively low cost, and provide continuous monitoring without causing any discomfort. Among signals that contain critical information about human body status, electromyography (EMG) signal is particular useful in monitoring muscle functionality and activity during sport, fitness, or daily life. In particular surface electromyography (sEMG) has proven to be a suitable technique in several health monitoring applications, thanks to its non-invasiveness and ease to use. However, recording EMG signals from multiple channels yields a large amount of data that increases the power consumption of wireless transmission thus reducing the sensor lifetime. Compressed sensing (CS) is a promising data acquisition solution that takes advantage of the signal sparseness in a particular basis to significantly reduce the number of samples needed to reconstruct the signal. As a large variety of algorithms have been developed in recent years with this technique, it is of paramount importance to assess their performance in order to meet the stringent energy constraints imposed in the design of low-power wireless body area networks (WBANs) for sEMG monitoring. The aim of this paper is to present a comprehensive comparative study of computational methods for CS reconstruction of EMG signals, giving some useful guidelines in the design of efficient low-power WBANs. For this purpose, four of the most common reconstruction algorithms used in practical applications have been deeply analyzed and compared both in terms of accuracy and speed, and the sparseness of the signal has been estimated in three different bases. A wide range of experiments are performed on real-world EMG biosignals coming from two different datasets, giving rise to two different independent case studies.


Subject(s)
Algorithms , Electromyography/methods , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio , Wearable Electronic Devices , Wireless Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...