Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
2.
Inorg Chem ; 63(8): 3824-3834, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38335458

ABSTRACT

The synthesis, characterization, and single-crystal-to-single-crystal (SCSC) exchange reactions of a new 3D Cu2+ MOF based on 5-aminoisophthalic acid (H2AIP), [Cu6(µ3-ΟΗ)3(ΑΙΡ)4(HΑΙΡ)]n·6nDMF·nH2O - UCY-16·6nDMF·nH2O, are reported. It exhibits a 3D structure based on two [Cu4(µ3-OH)2]6+ butterfly-like secondary building units, differing in their peripheral ligation, bridged through HAIP-/AIP2- ligands. This compound displays the capability to exchange the coordinating ligand(s) and/or guest solvent molecules through SCSC reactions. Interestingly, heterogeneous reactions of single crystals of UCY-16·6nDMF·nH2O with primary alcohols resulted not only in the removal of the lattice DMF molecules but also in an unprecedented structural alteration that involved the complete or partial replacement of the monoatomic bridging µ3-OH- anion(s) of the [Cu4(µ3-OH)2]6+ butterfly structural core by various alkoxy groups. Similar crystal-to-crystal exchange reactions of UCY-16·6nDMF·nH2O with long-chain aliphatic alcohols (CxH2x+1OH, x = 8-10, 12, 14, and 16) led to analogues containing fatty alcohols. Notably, the exchanged products with the bulkier alcohols UCY-16/n-CxH2x+1OH·S' (x = 6-10, 12, 14, and 16) do not mix with H2O being quite stable in this solvent, in contrast to the pristine MOF, and exhibit a hydrophobic/superhydrophobic surface as confirmed from the investigation of their water contact angles and capability to remove hydrophobic pollutants from aqueous media.

3.
ACS Appl Mater Interfaces ; 16(10): 12672-12685, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38421719

ABSTRACT

The incorporation of superhydrophobic properties into metal organic framework (MOF) materials is highly desirable to enhance their hydrolytic stability, gas capture selectivity in the presence of humidity and efficiency in oil-water separations, among others. The existing strategies for inducing superhydrophobicity into MOFs have several weaknesses, such as increased cost, utilization of toxic reagents and solvents, applicability for limited MOFs, etc. Here, we report the simplest, most eco-friendly, and cost-effective process to impart superhydrophobicity to MOFs, involving a rapid (90 min) treatment of MOF materials with solutions of sodium oleate, a main component of soap. The method can be applied to both hydrolytically stable and unstable MOFs, with the porosity of modified MOFs approaching, in most cases, that of the pristine materials. Interestingly, this approach was used to isolate superhydrophobic magnetic MOF composites, and one of these materials formed stable liquid marbles, whose motion could be easily guided using an external magnetic field. We also successfully fabricated superhydrophobic MOF-coated cotton fabric and fiber composites. These composites exhibited exceptional oil sorption properties achieving rapid removal of floating crude oil from water, as well as efficient purification of oil-in-water emulsions. They are also regenerable and reusable for multiple sorption processes. Overall, the results described here pave the way for an unprecedented expansion of the family of MOF-based superhydrophobic materials, as virtually any MOF could be converted into a superhydrophobic compound by applying the new synthetic approach.

4.
Molecules ; 28(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36677877

ABSTRACT

Environmental pollution has been a reality for many decades, with its contamination intensifying daily due to rapid urbanization and the ever-increasing world population. Dyes, and especially synthetic ones, constitute a category of pollutants that not only affect the quality of water but also exhibit high toxicity toward living organisms. This study was thoroughly planned to explore the removal of two toxic dyes, namely the methylene blue (MB) and methyl orange (MO) compounds from contaminated aqueous media. For this purpose, we designed and synthesized two new composite materials based on ammonium-functionalized Zr4+ MOF (MOR-1 or UiO-66-NH3+) and naturally occurring sorbents, such as bentonite and clinoptilolite. The composite materials displayed exceptional sorption capability toward both MB+ and MO- ions. A key finding of this study was the high efficiency of the composite materials to simultaneously remove MB+ and MO- under continuous flow conditions, also showing regeneration capability and reusability, thus providing an alternative to well-known mixed bed resins.

5.
Dalton Trans ; 51(45): 17301-17309, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36317666

ABSTRACT

In the present study we provide the sorption properties of four 8-connected Zr4+ MOFs with the general formula H16[Zr6O16(RNH-BDC)4]·solvent (RNH-BDC2- = 2-alkyl-amine-terephthalate; R = ethyl-, ET-MOF; R = propyl-, PROP-MOF; R = isobutyl-, SBUT-MOF; R = n-butyl, BUT-MOF) towards toxic Cr(VI) and radionuclide-related ReO4- oxoanions. These MOFs represent superior sorbents for the removal of oxoanionic species, in terms of kinetics, sorption isotherms, selectivity and regeneration/reusability. The excellent sorption capability of the MOFs is due to a combination of surface and intra-framework sorption phenomena. The latter process proceeds via replacement of terminal water/hydroxyl ligands from the Zr6 clusters and subsequent binding of oxonanions to the Zr4+ centers, a fact that was proved via Rietveld PXRD analysis for the anion-loaded BUT-MOF. Importantly, BUT-MOF demonstrated an exceptional sorption capacity for Cr2O72- (505 mg g-1) and was further utilized in a sorption column in the form of MOF/calcium alginate beads, displaying remarkable removal efficiency towards industrial (chrome-plating) wastewater. Furthermore, the luminescence Cr(VI) sensing properties of BUT-MOF were explored in detail, presenting high sensitivity (detection limits as low as 9 ppb) and selectivity for these species against various competitive anions.


Subject(s)
Chromium , Luminescence , Water , Anions
6.
Chem Commun (Camb) ; 58(63): 8862-8865, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35856288

ABSTRACT

The use of terephthalate ligands with CnH2n+1NH-chains (n ≥ 6) led to the isolation of the first examples of Zr4+-terephthalate MOFs with 6-connected frameworks. The material with hexyl-amino functional groups has been proved to be an exceptional sorbent for the removal of As(III/V) toxic species from aqueous media, whereas MOFs with heptyl to dodecyl-amino moieties are superhydrophobic with promising oil-water separation properties.


Subject(s)
Phthalic Acids , Hydrophobic and Hydrophilic Interactions , Water/chemistry
7.
Inorg Chem ; 61(30): 11959-11972, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35861587

ABSTRACT

Trivalent lanthanide ions (Ln3+) hold an exceptional position in the field of optoelectronic materials due to their atomic-like emission spectra and long luminescence lifetimes. Metal-organic frameworks (MOFs) and coordination polymers are particularly suited as luminescent materials due to their structural diversity and ease of functionalization both at bridging ligands and/or metal centers. In this contribution, we present a series of mixed-metal Ln3+/Eu3+ (Ln = La, Gd) and mixed-ligand (2,6-naphthalenedicarboxylate (ndc2-) and 4-aminonaphthalene-2,6-dicarboxylate (andc2-)) MOFs belonging to three different structural types, with emissions spanning most of the visible region, thereby constituting favorable materials for color tuning and white-light emission. We investigate the thermal stability and photophysical properties of the synthesized materials with regard to their metal and ligand doping levels and structural type, where we discuss excimer and monomer emission. The photophysical study, involving both steady-state and time-resolved luminescence measurements, allows us to discuss the possible energy migration and Eu3+ sensitization pathways that take place within these materials following ligand excitation. Low-temperature luminescence studies led us to determine the energies of the ligand-based excited states and investigate their participation in thermally activated energy transfer mechanisms within the studied lattices. We observe emission quantum yields of up to 87% for the Eu3+-doped materials, while their ligand- and metal-doped counterparts show decreased quantum yields of up to 17%. Finally, we attempt fine color tuning by carefully adjusting the doping levels to achieve yellow and white-light emission.

8.
Inorg Chem ; 61(20): 7847-7858, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35523200

ABSTRACT

Increasing global environmental pollution due to heavy metal ions raises the importance of research on new multifunctional materials for simultaneous detection and removal of these contaminants from water resources. In this study, we report a microporous 8-connected Zr4+ metal-organic framework (MOF) based on a terephthalate ligand decorated with a chelating 2-picolylamine side group (dMOR-2), which shows highly efficient fluorescence sensing and sorption of heavy metal cations. We demonstrate by detailed fluorescence studies the ability of a water-dispersible composite of dMOR-2 with polyvinylpyrrolidone for real-time detection of Cu2+, Pb2+, and Hg2+ in aqueous media. The limits of detection were found to be below 2 ppb for these species, while the system's performance is not affected by the presence of other potentially competitive ions. In addition, sorption studies showed that a composite of dMOR-2 with calcium alginate (dMOR-2@CaA) is an excellent sorbent for Pb2+ and Cu2+ ions with capacities of 376 ± 15 and 117 ± 4 mg per gram of dMOR-2@CaA, respectively, while displaying the capability for simultaneous removal of various heavy metal ions in low initial concentrations and in the presence of large excesses of other cationic species. Structural and spectroscopic studies with model ligands analogous to our material's receptor unit showed chelation to the 2-picolylamine moiety to be the main binding mode of metal ions to dMOR-2. Overall, dMOR-2 is shown to represent a rare example of a MOF, which combines sensitive fluorescence detection and high sorption capacity for heavy metal ions.


Subject(s)
Metal-Organic Frameworks , Metals, Heavy , Coloring Agents , Ions , Lead , Metal-Organic Frameworks/chemistry , Water
9.
J Chromatogr A ; 1670: 462945, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35306371

ABSTRACT

In this work, we introduce the use of MOFs immobilized on cotton fabrics as a sorbent phase for the fabric phase sorptive extraction and passive sampling of non-polar organic compounds from water samples. A water-stable, Zr4+-based MOF (UiO-66(Zr)-NH2) was irreversibly immobilized on polydopamine decorated cotton through a step-wise synthetic procedure that maximized the amount of MOF immobilized on the fabric surface. In this manner it was possible to combine the permeability and the large contact surface area of the host cotton substrate with the high specific surface area and sorption capacity of the MOF. The MOF@cotton composite was used as a new sorbent phase for the fabric phase sorptive extraction of UV filters, as model organic compounds, not only under static (i.e. stirring assisted) but also in dynamic, flow-through extraction mode (i.e. as a solid phase extraction sorbent phase), producing satisfactory analytical results in terms of linearity of calibration curves (10-250 µg L-1), precision (<11%), detection limits <10 µg L-1 (using a single wavelength UV detector) and recoveries (86 - 119%) from various natural water samples. As a passive sampling sorbent phase, the MOF@cotton composite could linearly accumulate UV filters over time period of 35 days with sampling rates from 0.026 to 0.352 L d-1, which are comparable to other passive sampling sorbent phases.


Subject(s)
Metal-Organic Frameworks , Chromatography, High Pressure Liquid/methods , Metal-Organic Frameworks/chemistry , Phthalic Acids , Water , Zirconium/chemistry
10.
Inorg Chem ; 61(4): 2017-2030, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35044748

ABSTRACT

Herein, we report the synthesis and characterization of a new robust Al3+ metal-organic framework MOF, [Al(OH)(PATP)]·solvent (Al-MOF-1, with PATP2- = 2-((pyridin-2-ylmethyl)amino)terephthalate). Al-MOF-1 exhibits excellent stability from highly acidic (pH = 2) to basic (pH = 12) aqueous solutions or in the presence of oxoanionic species [As(V) and Cr(VI)]. On the contrary, the related MIL-53(Al) MOF (Al(OH) (BDC), with BDC2- = terephthalate) shows a partial structure collapse under these conditions, signifying the superior chemical robustness of Al-MOF-1. Al-MOF-1 was proved to be an effective sorbent toward As(V) with efficient sorption capacity (71.9 ± 3.8 mg As/g), rapid sorption kinetics (equilibrium time ≤1 min), and high selectivity in the presence of various competing anions. Furthermore, Al-MOF-1 revealed high sorption capacities for Cr(VI) species in both neutral (124.5 ± 8.6 mg Cr/g) and acidic (63 ± 2 mg Cr/g) aqueous media, combining fast kinetics and relatively good selectivity. The limited porosity (BET = 38 m2/g) and small pores (2-3 Å) of the material indicate that the sorption process occurs exclusively on the external surface of Al-MOF-1 particles. The driving force for the capture of oxoanions by Al-MOF-1 is the strong electrostatic interactions between the oxoanionic species and the positively charged surface of MOF particles. Aiming at a practical wastewater treatment, we have also immobilized Al-MOF-1 on a cotton substrate, coated with polydopamine. The fabric sorbent exhibited highly effective removal of the toxic oxoanionic species from aqueous media under either batch or dynamic (continuous flow) conditions. In addition, Al-MOF-1 was found to be a promising luminescence sensor for detecting trace amounts of Cr(VI) in real water samples, with Cr(VI) being successfully detected at concentrations well below the acceptable limits (<50 ppb). Moreover, Al-MOF-1 was demonstrated to be a sufficient water sensor in organic solvents (LOD ≤0.25% v/v). All the above indicate that Al-MOF-1 represents a multifunctional material with a multitude of potential applications, such as environmental remediation, industrial wastewater treatment, chemical analysis, and water determination in biofuels.

11.
Dalton Trans ; 49(46): 16736-16744, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33118571

ABSTRACT

Alkaline earth metal ion organic frameworks (AEMOFs) represent a relatively underexplored subcategory of metal-organic frameworks (MOFs). In this contribution, we present the synthesis and structural study of the new MOFs 1-8 based on the alkaline earth ions Mg2+, Ca2+, Sr2+ and Ba2+ and the amino substituted bridging ligands 4-aminonaphthalene-2,6-dicarboxylate (ANDC2-) and 4,8-diaminonaphthalene-2,6-dicarboxylate (DANDC2-). Compounds 1, 5, 6, 7 and 8 constitute rare examples of three-dimensional MOFs which feature square planar M4 secondary building units (SBUs) surrounded by eight bridging ditopic ligands. The underlying topology of MOFs 1, 5, 7 and 8 conforms to the 4-c pcb net which can be simplified to the 8-c bcu net, while 6 adopts the 4-c lta net which simplifies to the 8-c reo net. To the best of our knowledge these are the first examples of MOFs of their structural types formed by linear dicarboxylates instead of trigonal tricarboxylates or tetrahedral tetracarboxylates. Compounds 2, 3 and 4 also feature three dimensional networks with linear rod-shaped SBUs with the Ba2+ MOF 3 displaying an sra rod-net and MOFs 2 and 4 showing very complex rod-nets with so far unique topologies. Fluorescence studies revealed that the free ligands exhibit strong blue-green emission displaying considerable positive solvatochromism thereby pointing towards charge transfer excited states involving the shift of electron density from the amino groups to the aromatic core. Correspondingly, the MOFs display ligand based fluorescence with small differences in emission maxima possibly attributable to the difference in the charge density of the metal ions combined with the different environments around ligands in the crystal structures.

12.
Sci Rep ; 10(1): 9358, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518373

ABSTRACT

Exposure of humans to Arsenic from groundwater drinking sources is an acute global public health problem, entailing the urgent need for highly efficient/low-cost Arsenite (AsIII) up-taking materials. Herein we present an innovative hybrid-material, ZrMOF@SFd operating like an "AsIII-sponge" with unprecedented efficiency of 1800 mg AsIII gr-1. ZrMOF@SFd consists of a neutral Zirconium Metal-Organic Framework [ZrMOF] covalently grafted on a natural silk-fiber (SFd). ZrMOF itself exhibits AsIII adsorption of 2200 mg gr-1, which supersedes any -so far- known AsΙΙΙ-sorbent. Using XPS, FTIR, BET-porosimetry data, together with theoretical Surface-Complexation-Modeling (SCM), we show that the high-AsΙΙΙ-uptake is due to a sequence of two phenomena:[i] at low AsIII-concentrations, surface-complexation of H3AsO3 results in AsIII-coated voids of ZrMOF, [ii] at increased AsIII-concentrations, the AsIII-coated voids of ZrMOF are filled-up by H3AsO3 via a partitioning-like mechanism. In a more general context, the present research exemplifies a mind-changing concept, i.e. that a "partitioning-like" mechanism can be operating for adsorption of metalloids, such as H3AsO3, by metal oxide materials. So far, such a mechanism has been conceptualized only for the uptake of non-polar organics by natural organic matter or synthetic polymers.

13.
Dalton Trans ; 47(10): 3549-3567, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29436543

ABSTRACT

Although the interactions of oligopyridine ruthenium complexes with DNA have been widely studied, the biological activity of similar diruthenium oligopyridine complexes conjugated with peptides has not been investigated. Herein, we report the stepwise synthesis and characterization of diruthenium complexes with the general formula [(La)Ru(tppz)Ru(Lb)]n+ (tppz = 2,3,5,6-tetra(2-pyridyl)pyrazine, La = 2,2':6',2''-terpyridine or 4-phenyl-2,2':6',2''-terpyridine and Lb = 2,2':6',2''-terpyridine-4'-CO(Gly1-Gly2-Gly3-LysCONH2) (5), (6), n = 5; 2,2':6',2''-terpyridine-4'-CO(Gly1-Gly2-Lys1-Lys2CONH2) (7), (8), n = 6; 2,2':6',2''-terpyridine-4'-CO(Ahx-Lys1Lys2CONH2) (9), (10), n = 5, Ahx = 6-aminohexanoic acid). The compounds [(trpy)Ru(tppz)Ru(trpy-CO2H)](PF6)4, (2)(PF6)4, [(ptrpy)Ru(tppz)Ru(trpy-CO2H)](PF6)4, (3)(PF6)4 and [(ptrpy)Ru(tppz)Ru(trpy)](PF6)4, (4)(PF6)4 were also characterized by single crystal X-ray methods. Moreover, the interactions of the chloride salts (5), (6) and (4) with the self-complementary dodecanucleotide duplex d(5'-CGCGAATTCGCG-3')2 were studied by NMR spectroscopic techniques. The results show that complex (4) binds in the central part of the oligonucleotide, from the minor groove through the ligand ptrpy, while the ligand trpy, which was located on the other side of the diruthenium core, does not contribute to the binding. Complex (5) binds similarly, through the ligand ptrpy. However, the induced upfield shifts of the ptrpy proton signals are significantly lower than the corresponding ones in the case of (4), indicating much lower binding affinity. This is clear evidence that the tethered peptide Gly1-Gly2-Gly3-Lys1CONH2 hinders the complex binding, even though it contains groups that are able to assist it (e.g., the positively charged amino group of lysine, the peptidic backbone, the terminal amide). Complex (6) shows a non-specific binding, interacting through electrostatic forces. The chloride salts of (4), (5) and (6) had insignificant effects on the cell cycle distribution and marginal cytotoxicity (IC50 > 750 µM) against human lung cancer cell lines H1299 and H1437, indicating that their binding to the oligonucleotide is not a sufficient condition for their cytotoxicity.


Subject(s)
DNA/metabolism , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Peptides/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chemistry Techniques, Synthetic , Humans , Ligands , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism
14.
Inorg Chem ; 56(14): 7582-7597, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28654276

ABSTRACT

Over the last 3-4 decades, solid-state chemistry has emerged as the forefront of materials design and development. The field has revolutionized into a multidisciplinary subject and matured with a scope of new synthetic strategies, new challenges, and opportunities. Understanding the structure is very crucial in the design of appropriate materials for desired applications. Professor Mercouri G. Kanatzidis has encountered both challenges and opportunities during the course of the discovery of many novel materials. Throughout his scientific career, Mercouri and his group discovered several inorganic compounds and pioneered structure-property relationships. We, a few Ph.D. and postdoctoral students, celebrate his 60th birthday by providing a Viewpoint summarizing his contributions to inorganic solid-state chemistry. The topics discussed here are of significant interest to various scientific communities ranging from condensed matter to green energy production.

15.
Dalton Trans ; 46(5): 1467-1480, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28074206

ABSTRACT

Platinum(ii) complexes of the formula PtLCl2 [L = 2-(2'-pyridyl)quinoxaline, (pqx) (1), 2,(2'-pyridyl)benzo[g]quinoxaline, (pbqx) (3) and 2,(2'-pyridyl)quinoline, (pqn) (5)] were synthesized and characterized by spectroscopic and X-ray diffraction methods. Also, monodentate coordination of the ligands pqx and pbqx formed the complexes trans-Pt(DMSO)pqxCl2 (2) and trans-Pt(DMSO)pbqxCl2 (4) as it is indicated from X-ray crystal structure and NMR studies. The reaction of the complexes (1), (3) and (5) with DMSO-d6 revealed a ligand-release solvolysis, which was studied by means of NMR techniques. Correlation between the crystal structures of (1), (3), and (5) and the kinetic or thermodynamic parameters of the solvolysis reactions showed that the tendency of the ligands pqx, pbqx, and pqn to return to the anti-configuration in addition to their ability to form non-classical H-bonds are crucial factors for the ligand-release solvolysis. Instantaneous DMSO-d6 solvolysis for the complexes (1) and (3) and slow kinetics solvolysis for (5) (k = 10-4 ± 6.4 × 10-6 s-1) reflect their structural differences in ligand planarity. Based on NMR techniques a two-step mechanism of the chelate ring opening was suggested with equilibrium constants of the overall reaction at 298 K, Keq = 4.1 ± 0.2 × 10-4 M-1 (1) and Keq = 1.7 ± 0.2 × 10-4 M-1 (2).

16.
Chempluschem ; 82(9): 1188-1196, 2017 Sep.
Article in English | MEDLINE | ID: mdl-31957299

ABSTRACT

The composite anion-exchange material MOR-1-HA (metal-organic resin-1-alginic acid) was investigated as sorbent for the capture of the methyl orange anion (MO- ) from aqueous solutions. MOR-1-HA shows a remarkably high sorption capacity (up to 859 mg g-1 ) and rapid sorption kinetics, the fastest among the reported metal-organic sorbents. It is capable of absorbing MO- over a wide pH range (1-8) and, in addition, it exhibits significant MO- sorption affinity even in the presence of large excesses of competing anions (e.g., Cl- , NO3 - , SO4 2- ). The exceptional MO- -sorption properties of MOR-1-HA arise not only from its highly porous structure and easily exchangeable Cl- anions, but also from a multitude of interaction effects, such as electrostatic interactions between MO- and the NH3 + groups of the material, hydration/dehydration, hydrophobicity/hydrophilicity, size and capacity of generating lateral interactions, and intercalation as revealed by theoretical studies. An ion-exchange column with a stationary phase containing MOR-1-HA and silica sand showed high efficiency for the removal of MO- from various types of aqueous samples. The column can be readily regenerated and reused for many runs with minimal loss (2.3-9.3 %) of its exchange capacity. The simplicity of the MOR-1-HA/sand column and its high regeneration capability and reusability make it particularly attractive for application in the remediation of MO- -contaminated industrial wastewater.

17.
Dalton Trans ; 45(3): 1063-77, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26659333

ABSTRACT

The reactions of various copper(ii) sources with 2-acetylpyridine, (py)(me)CO, and 2-benzoylpyridine, (py)(ph)CO, under strongly basic conditions have been studied and novel ligand transformations have been discovered. Reaction of Cu(ClO4)2·6H2O and (py)(me)CO in the presence of NBu4(n)OMe (1 : 1 : 1) in CHCl3 gave a mixture of [Cu2Cl2(HLA)2](ClO4)2 (1) and [Cu2Cl2(LB)2(ClO4)2] (2), where HLA is 3-hydroxy-1,3-di(pyridin-2-yl)-butane-1-one and LB is the zwitterionic-type ligand 3-hydroxy-1-methyl-3-(pyridin-2-yl)-3H-indolizin-4-ium. The ligand HLA is formed through an aldol reaction-type mechanism, while the formation of LB takes place via an intramolecular nucleophilic attack of the remote 2-pyridyl nitrogen atom on the positive carbonyl carbon of HLA, after the transformation of the latter through deprotonation and dehydration. The Cu(II) ions in 1 are bridged by two 2.1111 HLA ligands resulting in a long Cu(II)Cu(II) distance (5.338 Å); the metal ions in 2 are triply bridged by the alkoxide oxygen atoms of the two 2.21 LB ligands and one 2.1100 perchlorato group. The absence of α-hydrogens in (py)(ph)CO leads the reactivity of this ligand in the presence of Cu(II) to different pathways. The Cu(ClO4)2·6H2O/(py)(ph)CO/NBu4(n)OMe reaction mixture in MeOH/H2O (25 : 1 v/v) gave the dinuclear cationic complex [Cu2{(py)(ph)CO}2(LC)2](ClO4)2 (3), where LC(-) is the anion of (methoxy)(phenyl)(pyridin-2-yl)methanol formed in situ via the nucleophilic addition of MeO(-) to the carbonyl carbon of (py)(ph)CO upon Cu(II) coordination. The Cu(II) ions in the cation are doubly bridged by the deprotonated oxygen atoms of the two LC(-) ligands. Replacement of Cu(ClO4)2·6H2O with Cu(NO3)2·3H2O and NBu4(n)OMe with NMe4OH and the decrease of the H2O concentration in the above reaction system yielded the tetranuclear coordination cluster [Cu4(OMe)2(NO3)4{(py)(ph)CO}2(LC)2] (4). The Cu(II) centres in this complex define a parallelogram. Two parallel sides of the parallelogram are each supported by deprotonated oxygen atoms belonging to a 2.21 LC(-) ligand and a 2.2 MeO(-) group. The metal ions that define each of the other two sides are singly bridged by an oxygen atom of a 2.210 nitrato group. No bridging exists between the Cu(II) ions that define the two diagonals of the parallelogram. Replacement of MeOH with EtOH in the reaction system that gave 4 resulted in the dinuclear complex [Cu2(NO3)2(LD)2)(EtOH)] (5), LD(-) being the anion of (ethoxy)(phenyl)(pyridin-2-yl)methanol. The Cu(II) ions are doubly bridged by the alkoxide oxygen atoms of the two 2.21 LD(-) ligands. The 1 : 1 : 1 Cu(NO3)2·3H2O/(py)(ph)CO/NMe4OH reaction system in CH3NO2 gave the dinuclear complex [Cu2(NO3)2(LE)2] (6), where LE(-) is the anion of 2-nitro-1-phenyl-1-(pyridin-2-yl)ethanol. The OH(-) ion abstracts one of the methyl hydrogens of CH3NO2, and once the carbanion (-):CH2NO2 is formed it attacks the positive (δ+) carbonyl carbon of (py)(ph)CO; as the carbanion forms the new C-C bond, the π electrons of the carbonyl group of the original ligand are transferred completely to oxygen forming the alkoxide-type ligand LE(-). The Cu(II) ions are doubly bridged by the alkoxide oxygen atoms of the two 2.21 LE(-) ligands. Simplified mechanistic views of the Cu(II)-assisted formation of the transformed ligands are proposed. Dc magnetic susceptibility studies in the 2-300 K range for the representative complexes 3-6 reveal the presence of very strong antiferromagnetic Cu(II)Cu(II) exchange interactions in the dinuclear complexes 3, 5, and 6 and within the dimeric {Cu2(OMe)(NO3){(py)(ph)CO}(LC)}(+) subunits of 4. The strong antiferromagnetic coupling is discussed in terms of the large Cu-O-Cu angles (101.0-102.9°) in the dinuclear, planar {Cu2O2} units/subunits of 3-6.

18.
Chem Sci ; 7(3): 2427-2436, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-29997784

ABSTRACT

We report an anion exchange composite material based on a protonated amine-functionalized metal-organic framework, denoted Metal Organic Resin-1 (MOR-1), and alginic acid (HA). MOR-1-HA material shows an exceptional capability to rapidly and selectively sorb Cr(vi) under a variety of conditions and in the presence of several competitive ions. The selectivity of MOR-1-HA for Cr(vi) is shown to be the result of strong O3CrVI···NH2 interactions. The composite sorbent can be successfully utilized in an ion-exchange column, in contrast to pristine MOR-1 which forms fine suspensions in water passing through the column. Remarkably, an ion exchange column with only 1% wt MOR-1-HA and 99% wt sand (an inert and inexpensive material) is capable of reducing moderate and trace Cr(vi) concentrations to well below the acceptable safety limits for water. The relatively low cost of MOR-1-HA/sand column and its high regeneration capability and reusability make it particularly attractive for application in the remediation of Cr(vi)-bearing industrial waste.

20.
Chem Sci ; 7(8): 4804-4824, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-30155129

ABSTRACT

Metal sulfide ion-exchangers (MSIEs) represent a new addition to the field of ion exchange materials. This is a growing class of materials that display exceptional selectivity and rapid sorption kinetics for soft or relatively soft metal ions as a result of their soft basic frameworks. Without requiring functionalization, they outperform the most efficient sulfur-functionalized materials. This is the first review focusing on this class of materials; it covers the most important MSIEs, focusing on their synthesis, structural features and ion-exchange chemistry. Furthermore, recent developments in the engineered and composite forms of MSIEs are described. Future research opportunities are also discussed in the hope of inspiring additional scientists to engage in this new area of research on sulfidic ion-exchange materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...