Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 59(4)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37109613

ABSTRACT

Total hip arthroplasty (THA) for end-stage osteoarthritis is one of the most effective surgical treatments in medicine. Impressive outcomes have been well documented in the literature with patients gaining ambulation and recovery of hip joint function. Nevertheless, there are still debatable issues and controversies that the orthopedic community has not been able to provide a definitive answer for. This review is focused on the current three most debatable issues surrounding the THA procedure: (1) new cutting-edge technology, (2) spinopelvic mobility, and (3) fast-track protocols. The scope of the herein narrative review is to analyze the debatable issues surrounding the three aforementioned topics and conclude the best contemporary clinical approaches regarding each issue.


Subject(s)
Arthroplasty, Replacement, Hip , Osteoarthritis , Humans , Hip Joint , Walking
2.
Psychopharmacology (Berl) ; 237(7): 2139-2149, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32388618

ABSTRACT

BACKGROUND: HDAC6 is a class IIB histone deacetylase expressed at many levels of the nociceptive pathway. This study tested the ability of novel and selective HDAC6 inhibitors to alleviate sensory hypersensitivity behaviors in mouse models of peripheral nerve injury and peripheral inflammation. METHODS: We utilized the murine spared nerve injury (SNI) model for peripheral nerve injury and the Complete Freund's Adjuvant (CFA) model of peripheral inflammation. We applied the Von Frey assay to monitor mechanical allodynia. RESULTS: Using the SNI model, we demonstrate that daily administration of the brain-penetrant HDAC6 inhibitor, ACY-738, abolishes mechanical allodynia in male and in female mice. Importantly, there is no tolerance to the antiallodynic actions of these compounds as they produce a consistent increase in Von Frey thresholds for several weeks. We observed a similar antiallodynic effect when utilizing the HDAC6 inhibitor, ACY-257, which shows limited brain expression when administered systemically. We also demonstrate that ACY-738 and ACY-257 attenuate mechanical allodynia in the CFA model of peripheral inflammation. CONCLUSIONS: Overall, our findings suggest that inhibition of HDAC6 provides a promising therapeutic avenue for the alleviation of mechanical allodynia associated with peripheral nerve injury and peripheral inflammation.


Subject(s)
Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/therapeutic use , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Pain Measurement/drug effects , Animals , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Pain Measurement/methods , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Rats , Rats, Sprague-Dawley
3.
Neuropsychopharmacology ; 42(7): 1548-1556, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28074831

ABSTRACT

Regulator of G-protein signaling 9-2 (RGS9-2) is a striatal-enriched signal-transduction modulator known to have a critical role in the development of addiction-related behaviors following exposure to psychostimulants or opioids. RGS9-2 controls the function of several G-protein-coupled receptors, including dopamine receptor and mu opioid receptor (MOR). We previously showed that RGS9-2 complexes negatively control morphine analgesia, and promote the development of morphine tolerance. In contrast, RGS9-2 positively modulates the actions of other opioid analgesics, such as fentanyl and methadone. Here we investigate the role of RGS9-2 in regulating responses to oxycodone, an MOR agonist prescribed for the treatment of severe pain conditions that has addictive properties. Using mice lacking the Rgs9 gene (RGS9KO), we demonstrate that RGS9-2 positively regulates the rewarding effects of oxycodone in pain-free states, and in a model of neuropathic pain. Furthermore, although RGS9-2 does not affect the analgesic efficacy of oxycodone or the expression of physical withdrawal, it opposes the development of oxycodone tolerance, in both acute pain and chronic neuropathic pain models. Taken together, these data provide new information on the signal-transduction mechanisms that modulate the rewarding and analgesic actions of oxycodone.


Subject(s)
Analgesics, Opioid/therapeutic use , Chronic Pain/drug therapy , Chronic Pain/metabolism , Oxycodone/therapeutic use , Pain Measurement/methods , RGS Proteins/deficiency , Analgesics, Opioid/pharmacology , Animals , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxycodone/pharmacology , Pain Measurement/drug effects , Treatment Outcome
4.
Proc Natl Acad Sci U S A ; 112(36): E5088-97, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26305935

ABSTRACT

The striatal protein Regulator of G-protein signaling 9-2 (RGS9-2) plays a key modulatory role in opioid, monoamine, and other G-protein-coupled receptor responses. Here, we use the murine spared-nerve injury model of neuropathic pain to investigate the mechanism by which RGS9-2 in the nucleus accumbens (NAc), a brain region involved in mood, reward, and motivation, modulates the actions of tricyclic antidepressants (TCAs). Prevention of RGS9-2 action in the NAc increases the efficacy of the TCA desipramine and dramatically accelerates its onset of action. By controlling the activation of effector molecules by G protein α and ßγ subunits, RGS9-2 affects several protein interactions, phosphoprotein levels, and the function of the epigenetic modifier histone deacetylase 5, which are important for TCA responsiveness. Furthermore, information from RNA-sequencing analysis reveals that RGS9-2 in the NAc affects the expression of many genes known to be involved in nociception, analgesia, and antidepressant drug actions. Our findings provide novel information on NAc-specific cellular mechanisms that mediate the actions of TCAs in neuropathic pain states.


Subject(s)
Antidepressive Agents/pharmacology , Corpus Striatum/metabolism , Neuralgia/prevention & control , RGS Proteins/metabolism , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Animals , Blotting, Western , Corpus Striatum/physiopathology , Female , Gene Expression/drug effects , Gene Ontology , Gene Regulatory Networks/drug effects , Hyperalgesia/physiopathology , Hyperalgesia/prevention & control , Male , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/genetics , Neuralgia/physiopathology , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiopathology , RGS Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Treatment Outcome
5.
BMC Cancer ; 14: 651, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25182808

ABSTRACT

BACKGROUND: The detection of circulating tumor cells (CTCs) in peripheral blood (PB) of patients with breast cancer predicts poor clinical outcome. Cancer cells with stemness and epithelial-to-mesenchymal transition (EMT) features display enhanced malignant and metastatic potential. A new methodology was developed in order to investigate the co-expression of a stemness and an EMT marker (ALDH1 and TWIST, respectively) on single CTCs of patients with early and metastatic breast cancer. METHODS: Triple immunofluorescence using anti-pancytokeratin (A45-B/B3), anti-ALDH1 and anti-TWIST antibodies was performed in cytospins prepared from hepatocellular carcinoma HepG2 cells and SKBR-3, MCF-7 and MDA.MB.231 breast cancer cell lines. Evaluation of ALDH1 expression levels (high, low or absent) and TWIST subcellular localization (nuclear, cytoplasmic or absent) was performed using the ARIOL system. Cytospins prepared from peripheral blood of patients with early (n = 80) and metastatic (n = 50) breast cancer were analyzed for CTC detection (based on pan-cytokeratin expression and cytomorphological criteria) and characterized according to ALDH1 and TWIST. RESULTS: CTCs were detected in 13 (16%) and 25 (50%) patients with early and metastatic disease, respectively. High ALDH1 expression (ALDH1high) and nuclear TWIST localization (TWISTnuc) on CTCs was confirmed in more patients with metastatic than early breast cancer (80% vs. 30.8%, respectively; p = 0.009). In early disease, ALDH1low/neg CTCs (p = 0.006) and TWISTcyt/neg CTCs (p = 0.040) were mainly observed. Regarding co-expression of these markers, ALDH1high/TWISTnuc CTCs were more frequently evident in the metastatic setting (76% vs. 15.4% of patients, p = 0.001; 61.5% vs. 12.9% of total CTCs), whereas in early disease ALDH1low/neg/TWISTcyt/neg CTCs were mainly detected (61.5% vs. 20% of patients, p = 0.078; 41.9% vs. 7.7% of total CTCs). CONCLUSIONS: A new assay is provided for the evaluation of ALDH1 and TWIST co-expression at the single CTC-level in patients with breast cancer. A differential expression pattern for these markers was observed both in early and metastatic disease. CTCs expressing high ALDH1, along with nuclear TWIST were more frequently detected in patients with metastatic breast cancer, suggesting that these cells may prevail during disease progression.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Isoenzymes/metabolism , Neoplastic Cells, Circulating/pathology , Nuclear Proteins/metabolism , Retinal Dehydrogenase/metabolism , Single-Cell Analysis/methods , Twist-Related Protein 1/metabolism , Aldehyde Dehydrogenase 1 Family , Cell Line, Tumor , Cell Nucleus/metabolism , Epithelial-Mesenchymal Transition , Female , Hep G2 Cells , Humans , MCF-7 Cells , Neoplasm Metastasis
6.
Neurobiol Learn Mem ; 115: 43-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25150149

ABSTRACT

The signal transduction modulator Rgs9-2 (Regulator of G protein signaling 9-2) plays a key role in dopaminergic and opioidergic transmission in the striatum. Rgs9-2 is a potent modulator of opiate reward and analgesia, but its role in chronic pain remains unknown. Here, we use the spared nerve injury model (SNI), to evaluate the influence of Rgs9-2 in sensory symptoms, as well as in anxiety and depression-like behaviors observed under neuropathic pain conditions. Our data demonstrate that knockout of the Rgs9 gene reduces the intensity of thermal hyperalgesia and mechanical allodynia the first few days after nerve injury. This small, but significant effect is only observed at early time points after nerve injury, whereas after the first week of SNI, Rgs9 knockout (Rgs9KO) and Rgs9 wildtype (Rgs9WT) mice show similar levels of mechanical allodynia and thermal hyperalgesia. Furthermore, Rgs9-2 deletion exacerbates anxiety and depression like behaviors several weeks after the emergence of the neuropathic pain symptoms. Our findings also reveal a temporal and regional regulation of Rgs9-2 protein expression by neuropathic pain, as Rgs9-2 levels are reduced in the spinal cord a few days after nerve injury, whereas decreased Rgs9-2 levels in the Nucleus Accumbens (NAc) are only observed several weeks after nerve injury. Thus, adaptations in Rgs9-2 activity in the spinal cord and in the NAc may contribute to sensory and affective components of neuropathic pain.


Subject(s)
Neuralgia/physiopathology , RGS Proteins/physiology , Affect/physiology , Animals , Anxiety/physiopathology , Blotting, Western , Depression/physiopathology , Female , Hyperalgesia/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/psychology , Nucleus Accumbens/chemistry , RGS Proteins/analysis , Spinal Cord/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...