Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(27): 39588-39601, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822961

ABSTRACT

This work presents the first comprehensive assessment of PM pollution sources in Dushanbe, Tajikistan. A total of 138 PM2.5 samples were collected during 2015-2016 and 2018-2019 and were analyzed through gravimetric, ED-XRF, and multi-wavelength absorption techniques. The results show that PM2.5 concentrations were substantially higher than the European annual limit value and WHO Air Quality Guidelines annual average value, with an average of 90.9 ± 68.5 µg m-3. The PMF application identified eight sources of pollution that influenced PM2.5 concentration levels in the area. Coal burning (21.3%) and biomass burning (22.3%) were the dominant sources during the winter, while vehicular traffic (7.7%) contributed more during the warm season. Power plant emissions (17.5%) showed enhanced contributions during the warm months, likely due to high energy demand. Cement industry emissions (6.9%) exhibited significant contribution during the cold period of 2018-2019, while soil dust (11.3%) and secondary sulphates (11.5%) displayed increased contribution during the warm and cold months, respectively. Finally, waste burning (1.5%) displayed the lowest contribution, with no significant temporal variation. Our results highlight the significant impact of anthropogenic activities, and especially the use of coal burning for energy production (both in power plants and for residential heating), and the significant contribution of biomass burning during both warm and cold seasons.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Tajikistan , Air Pollutants/analysis , Particulate Matter/analysis , Cities , Seasons , Vehicle Emissions/analysis
2.
Nat Commun ; 15(1): 3517, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664406

ABSTRACT

The oxidative potential (OP) of particulate matter (PM) is a major driver of PM-associated health effects. In India, the emission sources defining PM-OP, and their local/regional nature, are yet to be established. Here, to address this gap we determine the geographical origin, sources of PM, and its OP at five Indo-Gangetic Plain sites inside and outside Delhi. Our findings reveal that although uniformly high PM concentrations are recorded across the entire region, local emission sources and formation processes dominate PM pollution. Specifically, ammonium chloride, and organic aerosols (OA) from traffic exhaust, residential heating, and oxidation of unsaturated vapors from fossil fuels are the dominant PM sources inside Delhi. Ammonium sulfate and nitrate, and secondary OA from biomass burning vapors, are produced outside Delhi. Nevertheless, PM-OP is overwhelmingly driven by OA from incomplete combustion of biomass and fossil fuels, including traffic. These findings suggest that addressing local inefficient combustion processes can effectively mitigate PM health exposure in northern India.

3.
Appl Radiat Isot ; 206: 111252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422941

ABSTRACT

This study analyzed 16070 daily and 608 weekly air filter samples from the Helsinki metropolitan area collected between 1962 and 2005. The aim was to use the Potential Source Contribution Function (PSCF) to determine potential sources of silicon (Si), zinc (Zn), lead (Pb), and radioactive isotope 210Pb. The main sources for Si and Pb were industrial activities, particularly mining, metal industry, and traffic. Common source areas for Zn and 210Pb were identified in the eastern and southeastern parts of the measuring site.

4.
Sci Total Environ ; 835: 155349, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35461945

ABSTRACT

The present study aims to investigate the sources of particulate pollution in indoor and outdoor environments, with focus on determining their contribution to the exposure of children to airborne particulate matter (PM). To this end, parallel indoor and outdoor measurements were carried out for a selection of 40 homes and 5 schools between September 2017 and October 2018. PM2.5 and PM2.5-10 samples were collected during five days in each microenvironment (ME) and analysed by X-Ray Fluorescence (XRF), for the determination of elements, and by a thermal-optical technique, for the measurement of organic and elemental carbon. The source apportionment analysis of the PM composition data, by means of the receptor model SoFi (Source Finder) 8 Pro, resulted in the identification of nine sources: exhaust and non-exhaust emissions from traffic, secondary particles, heavy oil combustion, industry, sea salt, soil, city dust, and an indoor source characterized by high levels of organic carbon. Integrated daily exposure to PM2.5 was on average 21 µg/m3. The organic matter, resulting from cleaning, cooking, smoking and biological material, was the major source contributing by 31% to the PM2.5 exposure. The source city dust, which was highly influenced by the resuspension of dust in classrooms, was the second main source (26%), followed by traffic (24%). The major sources affecting the integrated exposure to PM10, which was on average 33 µg/m3, were the city dust (39%), indoor organics (24%) and traffic (16%). This study provides important information for the design of measures to reduce the exposure of children to PM.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Carbon/analysis , Child , Dust/analysis , Environmental Monitoring/methods , Humans , Particle Size , Particulate Matter/analysis
5.
Sci Total Environ ; 780: 146449, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34030335

ABSTRACT

The quantification of the elemental concentration of ambient particulate matter is a challenging task because the observed elemental loadings are not well above the detection limit for most analytical techniques. Although non-destructive nuclear techniques are widely used for the chemical characterization of ambient aerosol, only one multi-element standard reference filter material that mimics ambient aerosol composition has become recently available in the market. To ensure accuracy, reliability and comparability of instruments performance, multiple reference materials with different elemental mass loadings are necessary. In this study, an intercomparison exercise was performed to evaluate the measurement uncertainty and instruments performance using multi-element dust standard reference samples deposited on PTFE filters. The filter samples, produced by means of dust dispersion, were tested in terms of homogeneity, reproducibility and long-term stability (≈40 months). Eight laboratories participated in the exercise. The evaluation of the results reported by the participants was performed by using two sets of reference values: a) the concentrations reported by the Expert Laboratory, b) the robust average concentrations reported by all participants. Most of the reported on the certificate of analysis elements were efficiently detected in the sample loadings prepared as representative for atmospheric samples by the Expert Laboratory. The average absolute relative difference between the reported and the reference values ranged between 0.1% (Ti) and 33.7% (Cr) (CRM-2584). The participants efficiently detected most of the elements except from the elements with atomic number lower than 16 (i.e. P, Al, Mg). The average absolute percentage difference between the participants results and the assigned value as derived by the expert laboratory was 17.5 ± 18.1% (CRM-2583; Cr, Pb excluded) and 16.7 ± 16.7% (CRM-2584; Cr, P excluded). The average "relative robust standard deviation" of the results reported by all participants was 25.1% (CRM-2583) and 22.8% (CRM-2584).

6.
J Environ Sci (China) ; 100: 51-61, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33279053

ABSTRACT

Traffic is a main source of air pollutants in urban areas and consequently daily peak exposures tend to occur during commuting. Personal exposure to particulate matter (PM) was monitored while cycling and travelling by bus, car and metro along an assigned route in Lisbon (Portugal), focusing on PM2.5 and PM10 (PM with aerodynamic diameter <2.5 and 10 µm, respectively) mass concentrations and their chemical composition. In vehicles, the indoor-outdoor interplay was also evaluated. The PM2.5 mean concentrations were 28 ± 5, 31 ± 9, 34 ± 9 and 38 ± 21 µg/m3 for bus, bicycle, car and metro modes, respectively. Black carbon concentrations when travelling by car were 1.4 to 2.0 times higher than in the other transport modes due to the closer proximity to exhaust emissions. There are marked differences in PM chemical composition depending on transport mode. In particular, Fe was the most abundant component of metro PM, derived from abrasion of rail-wheel-brake interfaces. Enhanced concentrations of Zn and Cu in cars and buses were related with brake and tyre wear particles, which can penetrate into the vehicles. In the motorised transport modes, Fe, Zn, Cu, Ni and K were correlated, evidencing their common traffic-related source. On average, the highest inhaled dose of PM2.5 was observed while cycling (55 µg), and the lowest in car travels (17 µg). Cyclists inhaled higher doses of PM2.5 due to both higher inhalation rates and longer journey times, with a clear enrichment in mineral elements. The presented results evidence the importance of considering the transport mode in exposure assessment studies.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Environmental Exposure/analysis , Environmental Monitoring , Particle Size , Particulate Matter/analysis , Portugal , Vehicle Emissions/analysis
7.
Environ Res ; 183: 109203, 2020 04.
Article in English | MEDLINE | ID: mdl-32050129

ABSTRACT

Exposure to particulate matter (PM) has been associated with adverse health outcomes, particularly in susceptible population groups such as children. This study aims to characterise children's exposure to PM and its chemical constituents. Size-segregated aerosol samples (PM0.25, PM0.25-0.5, PM0.5-1.0, PM1.0-2.5 and PM2.5-10) were collected in the indoor and outdoor of homes and schools located in Lisbon (Portugal). Organic and elemental carbon (OC and EC) were determined by a thermo-optical method, whereas major and trace elements were analysed by X-Ray Fluorescence. In school, the children were exposed to higher PM concentrations than in home, which might be associated not only to the elevated human occupancy but also to outdoor infiltration. The pattern of PM mass size distribution was dependent on the location (home vs. school and indoor vs. outdoor). The presence of EC in PM0.25 and OC in PM0.25-0.5 was linked to traffic exhaust emissions. OC and EC in PM2.5-10 may be explained by their adhesion to the surface of coarser particles. Generally, the concentrations of mineral and marine elements increased with increasing PM size, while for anthropogenic elements happened the opposite. In schools, the concentrations of mineral matter, anthropogenic elements and marine aerosol were higher than in homes. High mineral matter concentrations found in schools were related to the close proximity to busy roads and elevated human occupancy. Overall, the results suggest that exposure to PM is relevant and highlights the need for strategies that provide healthier indoor environments, principally in schools.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Particulate Matter , Child , Environmental Monitoring , Humans , Particle Size , Particulate Matter/toxicity , Portugal , Schools
8.
Sci Total Environ ; 653: 1407-1416, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30759579

ABSTRACT

The main objective of this study was chemical characterization and source apportionment of the oxidative potential of ambient PM2.5 samples collected in an urban background area in Athens, Greece. Ambient PM2.5 samples were collected during the summer (June-September) of 2017 and winter (February-March) of 2018 at a residential, urban background site in the outlying neighborhood of the Demokritos National Laboratory in Athens, Greece. The collected PM samples were analyzed for their chemical constituents including metals and trace elements, water-soluble organic carbon (WSOC), elemental and organic carbon (EC/OC), and marker of biomass burning (i.e., levoglucosan). In addition, the DCFH in vitro assay was performed to determine the oxidative potential of the PM2.5 samples. We performed a series of statistical analyses, including Spearman rank-order correlation analysis, principal component analysis (PCA), and multi linear regression (MLR) to determine the most significant species (as source tracers) contributing to the oxidative potential of PM2.5. Our findings revealed that the intrinsic (per PM mass) and extrinsic (per m3 of air volume) oxidative potentials of the collected ambient PM2.5 samples were significantly higher than those measured in many urban areas around the world. The results of the MLR analyses indicated that the major pollution sources contributing to the oxidative potential of ambient PM2.5 were vehicular emissions (characterized by EC) (44%), followed by secondary organic aerosol (SOA) formation (characterized by WSOC) (16%), and biomass burning (characterized by levoglucosan) (9%). The oxidative potential of the collected ambient PM2.5 samples was also higher in summer compared to the winter, mainly due to higher concentrations of EC and WSOC during this season. Results from this study corroborate the impact of traffic and SOA on the oxidative potential of ambient PM2.5 in greater Athens area, and can be helpful in adopting appropriate public health policies regarding detrimental outcomes of exposure to PM2.5.

SELECTION OF CITATIONS
SEARCH DETAIL
...