Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 10(1): 41, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33623027

ABSTRACT

We show that organic photovoltaics (OPVs) are suitable for high-speed optical wireless data receivers that can also harvest power. In addition, these OPVs are of particular interest for indoor applications, as their bandgap is larger than that of silicon, leading to better matching to the spectrum of artificial light. By selecting a suitable combination of a narrow bandgap donor polymer and a nonfullerene acceptor, stable OPVs are fabricated with a power conversion efficiency of 8.8% under 1 Sun and 14% under indoor lighting conditions. In an optical wireless communication experiment, a data rate of 363 Mb/s and a simultaneous harvested power of 10.9 mW are achieved in a 4-by-4 multiple-input multiple-output (MIMO) setup that consists of four laser diodes, each transmitting 56 mW optical power and four OPV cells on a single panel as receivers at a distance of 40 cm. This result is the highest reported data rate using OPVs as data receivers and energy harvesters. This finding may be relevant to future mobile communication applications because it enables enhanced wireless data communication performance while prolonging the battery life in a mobile device.

2.
Nat Commun ; 11(1): 1171, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32127529

ABSTRACT

Organic optoelectronic devices combine high-performance, simple fabrication and distinctive form factors. They are widely integrated in smart devices and wearables as flexible, high pixel density organic light emitting diode (OLED) displays, and may be scaled to large area by roll-to-roll printing for lightweight solar power systems. Exceptionally thin and flexible organic devices may enable future integrated bioelectronics and security features. However, as a result of their low charge mobility, these are generally thought to be slow devices with microsecond response times, thereby limiting their full scope of potential applications. By investigating the factors limiting their bandwidth and overcoming them, we demonstrate here exceptionally fast OLEDs with bandwidths in the hundreds of MHz range. This opens up a wide range of potential applications in spectroscopy, communications, sensing and optical ranging. As an illustration of this, we have demonstrated visible light communication using OLEDs with data rates exceeding 1 gigabit per second.

3.
Philos Trans A Math Phys Eng Sci ; 378(2169): 20190186, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32114909

ABSTRACT

Organic semiconductors are an important class of optoelectronic material that are widely studied because of the scope for tuning their properties by tuning their chemical structure, and simple fabrication to make flexible films and devices. Although most effort has focused on developing displays and lighting from these materials, their distinctive properties also make them of interest for visible light communications (VLCs). This article explains how their properties make them suitable for VLC and reviews the main uses that have been explored. On the transmitter side, record white VLC communication has been achieved by using organic semiconductors as colour converters, while direct modulation of organic light-emitting diodes is also possible and could be of interest for display-to-display communication. On the receiver side, organic solar cells can be used to harvest power and data simultaneously, and fluorescent antennas enable fast and sensitive receivers with large field of view. This article is part of the theme issue 'Optical wireless communication'.

4.
Beilstein J Org Chem ; 10: 2704-14, 2014.
Article in English | MEDLINE | ID: mdl-25550734

ABSTRACT

Star-shaped conjugated systems with varying oligofluorene arm length and substitution patterns of the central BODIPY core have been synthesised, leading to two families of compounds, T-B1-T-B4 and Y-B1-Y-B4, with T- and Y-shaped motifs, respectively. Thermal stability, cyclic voltammetry, absorption and photoluminescence spectroscopy of each member of these two families were studied in order to determine their suitability as emissive materials in photonic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...