Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 168: 112416, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33957496

ABSTRACT

Many coastal processes are regulated by day/night cycles and are expected to be altered by Artificial Light at Night (ALAN). The goal of this study was to assess the influence of ALAN on the settlement rates of intertidal barnacles. A newly designed settlement plate equipped with a small central LED light source was used to quantify settlement rates in presence/absence of ALAN conditions. "ALAN plates" as well as regular settlement plates were deployed in the mid rocky intertidal zone. Both ALAN and control plates collected early and late settlers of the barnacles Notochthamalus scabrosus and Jehlius cirratus. Early settlers (pre-metamorphosis cyprids) were not affected by ALAN. By contrast, the density of late settlers (post-metamorphosis spats) was significantly lower in ALAN than in control plates for both species, suggesting detrimental ALAN impacts on the settlement process. The new ALAN plates represent an attractive and alternative methodology to study ALAN effects.


Subject(s)
Thoracica , Animals , Ecosystem , Light , Metamorphosis, Biological
2.
Mar Pollut Bull ; 163: 111928, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33418341

ABSTRACT

Human growth has caused an unprecedented increase in artificial light at night (ALAN). In coastal habitats, many species rely on day/night cycles to regulate various aspects of their life history and these cycles can be altered by this stressor. This study assessed the influence of ALAN on the early (cyprid) and late (spat) settlement stages of the acorn barnacle Semibalanus balanoides, a species widely distributed in natural and man-made coastal habitats of the North Atlantic. A newly designed settlement plate, originally for studies in rocky intertidal habitats in the southeast Pacific, was adapted to measure settlement rates on man-made habitats -wharf seawalls- located in Atlantic Canada. Plates equipped with a small LED diode powered by an internal battery (ALAN plates) were used to quantify settlement rates in comparison to plates lacking a light source (controls). These plates were deployed for 6 d in the mid-intertidal levels, where adult barnacles were readily visible. ALAN and control plates collected large number of settlers and showed to be suitable for this type of man-made habitats. The number of early settlers (cyprids) did not differ between plates but the number of late settlers (spat) was significantly lower in ALAN plates than in controls. These results suggest that light pollution has little influence on the early stages of the acorn barnacle settlement but is clearly detrimental to its late stages. As barnacles dominate in many natural and man-made hard substrates, it is likely that ALAN also has indirect effects on community structure.


Subject(s)
Thoracica , Animals , Canada , Ecosystem , Environmental Pollution , Humans , Light , Seafood
3.
Environ Pollut ; 248: 565-573, 2019 May.
Article in English | MEDLINE | ID: mdl-30831353

ABSTRACT

Coastal habitats, in particular sandy beaches, are becoming increasingly exposed to artificial light pollution at night (ALAN). Yet, only a few studies have this far assessed the effects of ALAN on the species inhabiting these ecosystems. In this study we assessed the effects of ALAN on Tylos spinulosus, a prominent wrack-consumer isopod living in sandy beaches of north-central Chile. This species burrows in the sand during daylight and emerges at night to migrate down-shore, so we argue it can be used as a model species for the study of ALAN effects on coastal nocturnal species. We assessed whether ALAN alters the distribution and locomotor activity of this isopod using a light system placed in upper shore sediments close to the edge of the dunes, mimicking light intensities measured near public lighting. The response of the isopods was compared to control transects located farther away and not exposed to artificial light. In parallel, we measured the isopods' locomotor activity in the laboratory using actographs that recorded their movement within mesocosms simulating the beach surface. Measurements in the field indicated a clear reduction in isopod abundance near the source of the light and a restriction of their tidal distribution range, as compared to control transects. Meanwhile, the laboratory experiments showed that in mesocosms exposed to ALAN, isopods exhibited reduced activity and a circadian rhythm that was altered and even lost after a few days. Such changes with respect to control mesocosms with a natural day/night cycle suggest that the changes observed in the field were directly related to a disruption in the locomotor activity of the isopods. All together these results provide causal evidence of negative ALAN effects on this species, and call for further research on other nocturnal sandy beach species that might become increasingly affected by ALAN.


Subject(s)
Circadian Rhythm/radiation effects , Environmental Pollution/adverse effects , Isopoda/physiology , Lighting/adverse effects , Locomotion/radiation effects , Animals , Chile , Ecosystem
4.
Sci Total Environ ; 661: 543-552, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30682607

ABSTRACT

Artificial Light At Night (ALAN) is an increasing global problem that, despite being widely recognized in terrestrial systems, has been studied much less in marine habitats. In this study we investigated the effect of ALAN on behavioral and physiological traits of Concholepas concholepas, an important keystone species of the south-eastern Pacific coast. We used juveniles collected in intertidal habitats that had not previously been exposed to ALAN. In the laboratory we exposed them to two treatments: darkness and white LED (Lighting Emitting Diodes) to test for the impacts of ALAN on prey-searching behavior, self-righting time and metabolism. In the field, the distribution of juveniles was observed during daylight-hours to determine whether C. concholepas preferred shaded or illuminated microhabitats. Moreover, we compared the abundance of juveniles collected during day- and night-time hours. The laboratory experiments demonstrated that juveniles of C. concholepas seek out and choose their prey more efficiently in darkened areas. White LED illuminated conditions increased righting times and metabolism. Field surveys indicated that, during daylight hours, juveniles were more abundant in shaded micro-habitats than in illuminated ones. However, during darkness hours, individuals were not seen to aggregate in any particular microhabitats. We conclude that the exposure to ALAN might disrupt important behavioral and physiological traits of small juveniles in this species which, as a mechanism to avoid visual predators, are mainly active at night. It follows that ALAN in coastal areas might modify the entire community structure of intertidal habitats by altering the behavior of this keystone species.


Subject(s)
Environmental Pollution/adverse effects , Gastropoda/physiology , Life History Traits , Light/adverse effects , Animals , Gastropoda/radiation effects , Predatory Behavior/radiation effects
5.
Environ Pollut ; 244: 361-366, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30352350

ABSTRACT

The increase of global light emissions in recent years has highlighted the need for urgent evaluation of their impacts on the behaviour, ecology and physiology of organisms. Numerous species exhibit daily cycles or strong scototaxic behaviours that could potentially be influenced if natural lighting conditions or cycles are disrupted. Artificial Light Pollution at Night (ALAN) stands for situations where artificial light alters natural light-dark cycles, as well as light intensities and wavelengths. ALAN is increasingly recognized as a potential threat to biodiversity, mainly because a growing number of studies are demonstrating its influence on animal behaviour, migration, reproduction and biological interactions. Most of these studies have focused on terrestrial organisms and ecosystems with studies on the effects of ALAN on marine ecosystems being more occasional. However, with the increasing human use and development of the coastal zone, organisms that inhabit shallow coastal or intertidal systems could be at increasing risk from ALAN. In this study we measured the levels of artificial light intensity in the field and used these levels to conduct experimental trials to determine the impact of ALAN on an intertidal fish. Specifically, we measured ALAN effects on physiological performance (oxygen consumption) and behaviour (activity patterns) of "Baunco" the rockfish Girella laevifrons, one of the most abundant and ecologically important intertidal fish in the Southeastern Pacific littoral. Our results indicated that individuals exposed to ALAN exhibited increased oxygen consumption and activity when compared with control animals. Moreover, those fish exposed to ALAN stopped displaying the natural (circatidal and circadian) activity cycles that were observed in control fish throughout the experiment. These changes in physiological function and behaviour could have serious implications for the long-term sustainability of fish populations and indirect impacts on intertidal communities in areas affected by ALAN.


Subject(s)
Activity Cycles/physiology , Behavior, Animal/physiology , Energy Metabolism/physiology , Fishes/physiology , Lighting/adverse effects , Oxygen Consumption/physiology , Animals , Ecosystem , Environmental Pollution , Humans , Photoperiod , Reproduction/physiology , Seafood
SELECTION OF CITATIONS
SEARCH DETAIL
...