Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 81(7): 1546-1552, 2018 07 27.
Article in English | MEDLINE | ID: mdl-29979593

ABSTRACT

A chemoenzymatic approach providing access to all four intermediates in the peppermint biosynthetic pathway between limonene and menthone/isomenthone, including noncommercially available intermediates (-)- trans-isopiperitenol (2), (-)-isopiperitenone (3), and (+)- cis-isopulegone (4), is described. Oxidation of (+)-isopulegol (13) followed by enolate selenation and oxidative elimination steps provides (-)-isopiperitenone (3). A chemical reduction and separation route from (3) provides both native (-)- trans-isopiperitenol (2) and isomer (-)- cis-isopiperitenol (18), while enzymatic conjugate reduction of (-)-isopiperitenone (3) with IPR [(-)-isopiperitenone reductase)] provides (+)- cis-isopulegone (4). This undergoes facile base-mediated chemical epimerization to (+)-pulegone (5), which is subsequently shown to be a substrate for NtDBR ( Nicotiana tabacum double-bond reductase) to afford (-)-menthone (7) and (+)-isomenthone (8).


Subject(s)
Monoterpenes/chemical synthesis , Plant Oils/chemical synthesis , Isomerism , Mentha piperita
2.
ACS Synth Biol ; 4(10): 1112-23, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26017480

ABSTRACT

Menthol isomers are high-value monoterpenoid commodity chemicals, produced naturally by mint plants, Mentha spp. Alternative clean biosynthetic routes to these compounds are commercially attractive. Optimization strategies for biocatalytic terpenoid production are mainly focused on metabolic engineering of the biosynthesis pathway within an expression host. We circumvent this bottleneck by combining pathway assembly techniques with classical biocatalysis methods to engineer and optimize cell-free one-pot biotransformation systems and apply this strategy to the mint biosynthesis pathway. Our approach allows optimization of each pathway enzyme and avoidance of monoterpenoid toxicity issues to the host cell. We have developed a one-pot (bio)synthesis of (1R,2S,5R)-(-)-menthol and (1S,2S,5R)-(+)-neomenthol from pulegone, using recombinant Escherichia coli extracts containing the biosynthetic genes for an "ene"-reductase (NtDBR from Nicotiana tabacum) and two menthone dehydrogenases (MMR and MNMR from Mentha piperita). Our modular engineering strategy allowed each step to be optimized to improve the final production level. Moderate to highly pure menthol (79.1%) and neomenthol (89.9%) were obtained when E. coli strains coexpressed NtDBR with only MMR or MNMR, respectively. This one-pot biocatalytic method allows easier optimization of each enzymatic step and easier modular combination of reactions to ultimately generate libraries of pure compounds for use in high-throughput screening. It will be, therefore, a valuable addition to the arsenal of biocatalysis strategies, especially when applied for (semi)-toxic chemical compounds.


Subject(s)
Bioengineering/methods , Escherichia coli/metabolism , Menthol/metabolism , Escherichia coli/genetics
3.
ACS Catal ; 3(3): 370-379, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-27547488

ABSTRACT

The application of biocatalysis for the asymmetric reduction of activated C=C is a powerful tool for the manufacture of high-value chemical commodities. The biocatalytic potential of "-ene" reductases from the Old Yellow Enzyme (OYE) family of oxidoreductases is well-known; however, the specificity of these enzymes toward mainly small molecule substrates has highlighted the need to discover "-ene" reductases from different enzymatic classes to broaden industrial applicability. Here, we describe the characterization of a flavin-free double bond reductase from Nicotiana tabacum (NtDBR), which belongs to the leukotriene B4 dehydrogenase (LTD) subfamily of the zinc-independent, medium chain dehydrogenase/reductase superfamily of enzymes. Using steady-state kinetics and biotransformation reactions, we have demonstrated the regio- and stereospecificity of NtDBR against a variety of α,ß-unsaturated activated alkenes. In addition to catalyzing the reduction of typical LTD substrates and several classical OYE-like substrates, NtDBR also exhibited complementary activity by reducing non-OYE substrates (i.e., reducing the exocyclic C=C double bond of (R)-pulegone) and in some cases showing an opposite stereopreference in comparison with the OYE family member pentaerythritol tetranitrate (PETN) reductase. This serves to augment classical OYE "-ene" reductase activity and, coupled with its aerobic stability, emphasizes the potential industrial value of NtDBR. Furthermore, we also report the X-ray crystal structures of the holo-, binary NADP(H)-bound, and ternary [NADP+ and 4-hydroxy-3-methoxycinnamaldehyde (9a)-bound] NtDBR complexes. These will underpin structure-driven site-saturated mutagenesis studies aimed at enhancing the reactivity, stereochemistry, and specificity of this enzyme.

SELECTION OF CITATIONS
SEARCH DETAIL
...