Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitology ; 146(1): 112-120, 2019 01.
Article in English | MEDLINE | ID: mdl-29921336

ABSTRACT

We here assessed the in vitro efficacy of the naptho-quinone buparvaquone (BPQ) against Besnoitia besnoiti tachyzoites in vitro. BPQ is currently licensed for the treatment of theileriosis in cattle in many countries, but not in the EU. In 4-day treatment assays, BPQ massively impaired tachyzoite proliferation with an IC50 of 10 ± 3 nm, and virtually complete inhibition was obtained in the presence of nm BPQ. Exposure to 1 µm BPQ leads to ultrastructural changes affecting initially the mitochondrial matrix and the cristae. After 96 h, most parasites were largely distorted, filled with cytoplasmic amylopectin granules and vacuoles containing components of unknown composition. Host cell mitochondria did not appear to be notably affected by the drug. However, upon prolonged exposure (14-16 days) to increased BPQ concentrations, B. besnoiti tachyzoites exhibited the capacity to adapt, and they resumed proliferation at dosages of up to 10 µm BPQ, albeit at a lower rate. These BPQ-adapted parasites maintained this lower susceptibility to BPQ treatment after freeze-thawing, and inspection by the transmission electron microscopy revealed that they underwent proliferation in the absence of structurally intact mitochondria.


Subject(s)
Antiprotozoal Agents/pharmacology , Naphthoquinones/pharmacology , Sarcocystidae/drug effects , Animals , Antiprotozoal Agents/administration & dosage , Cell Line , Chlorocebus aethiops , Drug Resistance , Fibroblasts , Inhibitory Concentration 50 , Microscopy, Electron, Transmission , Mitochondria/drug effects , Naphthoquinones/administration & dosage , Sarcocystidae/physiology , Sarcocystidae/ultrastructure , Vero Cells
2.
Parasitology ; 143(5): 606-16, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26932317

ABSTRACT

Immunoprophylactic products against neosporosis during pregnancy should induce an appropriately balanced immune response. In this respect, OprI, a bacterial lipoprotein targeting toll like receptor (TLR)2, provides promising adjuvant properties. We report on the manipulation of the innate and the T-cell immune response through the fusion of OprI with the Neospora caninum chimeric protein Mic3-1-R. In contrast to Mic3-1-R, OprI-MIC3-1-R significantly activated bone-marrow dendritic cells from naïve mice. Mice immunized with OprI-Mic3-1-R induced an immune response with mixed T helper (Th)1 and Th2 properties (high levels of both immunoglobulin (Ig)G1 and IgG2a and of interleukin (IL)-10, IL-12(p70) and interferon-γ responses) whereas Mic3-1-R+saponin induced a clear Th2-biased response (low IgG2a and high IL-4 and IL-10). After mating and challenge with N. caninum, increased expression of interferon-γ was only found in placentas from OprI-Mic3-1-R immunized dams. However, no protection against vertical transmission and neonatal mortality was observed in either of the two groups. These results indicated that more exhaustive studies must be done to elucidate the immune mechanisms associated with transplacental transmission. Antigen linkage to TLR2-ligands, such as OprI, is a useful tool to investigate this enigma by reorienting the innate and adaptive immune responses against other candidate antigens in future studies.


Subject(s)
Antigens, Protozoan/immunology , Neospora/immunology , Toll-Like Receptor 2/immunology , Animals , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/blood , Antigens, Protozoan/chemistry , Brain/parasitology , Chlorocebus aethiops , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Female , Immunity, Cellular , Immunity, Innate/genetics , Immunity, Innate/immunology , Immunoglobulin G/biosynthesis , Immunoglobulin G/blood , Ligands , Mice , Mice, Inbred BALB C , Neospora/metabolism , Placenta/immunology , Placenta/parasitology , Pregnancy , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Toll-Like Receptor 2/metabolism , Vero Cells
3.
Vet Res ; 47: 32, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26883424

ABSTRACT

The three anti-malarial drugs artemiside, artemisone, and mefloquine, and the naphthoquinone buparvaquone known to be active against theileriosis in cattle and Leishmania infections in rodents, were assessed for activity against Neospora caninum infection. All four compounds inhibited the proliferation of N. caninum tachyzoites in vitro with IC50 in the sub-micromolar range, but artemisone and buparvaquone were most effective (IC50 = 3 and 4.9 nM, respectively). However, in a neosporosis mouse model for cerebral infection comprising Balb/c mice experimentally infected with the virulent isolate Nc-Spain7, the three anti-malarial compounds failed to exhibit any activity, since treatment did not reduce the parasite burden in brains and lungs compared to untreated controls. Thus, these compounds were not further evaluated in pregnant mice. On the other hand, buparvaquone, shown earlier to be effective in reducing the parasite load in the lungs in an acute neosporosis disease model, was further assessed in the pregnant mouse model. Buparvaquone efficiently inhibited vertical transmission in Balb/c mice experimentally infected at day 7 of pregnancy, reduced clinical signs in the pups, but had no effect on cerebral infection in the dams. This demonstrates proof-of-concept that drug repurposing may lead to the discovery of an effective compound against neosporosis that can protect offspring from vertical transmission and disease.


Subject(s)
Antiparasitic Agents/pharmacology , Coccidiosis/veterinary , Infectious Disease Transmission, Vertical/veterinary , Naphthoquinones/pharmacology , Neospora/drug effects , Animals , Coccidiosis/parasitology , Coccidiosis/prevention & control , Coccidiosis/transmission , Female , Infectious Disease Transmission, Vertical/prevention & control , Male , Mice, Inbred BALB C , Pregnancy
4.
Antimicrob Agents Chemother ; 59(10): 6361-74, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26248379

ABSTRACT

We report on the in vitro effects of the bumped kinase inhibitor 1294 (BKI-1294) in cultures of virulent Neospora caninum isolates Nc-Liverpool (Nc-Liv) and Nc-Spain7 and in two strains of Toxoplasma gondii (RH and ME49), all grown in human foreskin fibroblasts. In these parasites, BKI-1294 acted with 50% inhibitory concentrations (IC50s) ranging from 20 nM (T. gondii RH) to 360 nM (N. caninum Nc-Liv), and exposure of intracellular stages to 1294 led to the nondisjunction of newly formed tachyzoites, resulting in the formation of multinucleated complexes similar to complexes previously observed in BKI-1294-treated N. caninum beta-galactosidase-expressing parasites. However, such complexes were not seen in a transgenic T. gondii strain that expressed CDPK1 harboring a mutation (G to M) in the gatekeeper residue. In T. gondii ME49 and N. caninum Nc-Liv, exposure of cultures to BKI-1294 resulted in the elevated expression of mRNA coding for the bradyzoite marker BAG1. Unlike in bradyzoites, SAG1 expression was not repressed. Immunofluorescence also showed that these multinucleated complexes expressed SAG1 and BAG1 and the monoclonal antibody CC2, which binds to a yet unidentified bradyzoite antigen, also exhibited increased labeling. In a pregnant mouse model, BKI-1294 efficiently inhibited vertical transmission in BALB/c mice experimentally infected with one of the two virulent isolates Nc-Liv or Nc-Spain7, demonstrating proof of concept that this compound protected offspring from vertical transmission and disease. The observed deregulated antigen expression effect may enhance the immune response during BKI-1294 therapy and will be the subject of future studies.


Subject(s)
Coccidiosis/drug therapy , Coccidiostats/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/genetics , Protozoan Proteins/antagonists & inhibitors , Toxoplasmosis/drug therapy , Animals , Antibodies, Monoclonal/pharmacology , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Coccidiosis/parasitology , Coccidiosis/transmission , Female , Fibroblasts/drug effects , Fibroblasts/parasitology , Gene Expression , Heat-Shock Proteins/agonists , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Infectious Disease Transmission, Vertical/prevention & control , Mice , Mice, Inbred BALB C , Neospora/drug effects , Neospora/enzymology , Neospora/genetics , Pregnancy , Primary Cell Culture , Protein Kinases/metabolism , Protozoan Proteins/agonists , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Toxoplasma/drug effects , Toxoplasma/enzymology , Toxoplasma/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/transmission
5.
Int J Parasitol Drugs Drug Resist ; 5(1): 16-25, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25941626

ABSTRACT

The naphthoquinone buparvaquone is currently the only drug used against theileriosis. Here, the effects of buparvaquone were investigated in vitro and in an experimental mouse model for Neospora caninum infection. In 4-day proliferation assays, buparvaquone efficiently inhibited N. caninum tachyzoite replication (IC50 = 4.9 nM; IC100 = 100 nM). However, in the long term tachyzoites adapted and resumed proliferation in the presence of 100 nM buparvaquone after 20 days of cultivation. Parasiticidal activity was noted after 9 days of culture in 0.5 µM or 6 days in 1 µM buparvaquone. TEM of N. caninum infected fibroblasts treated with 1 µM buparvaquone showed that the drug acted rather slowly, and ultrastructural changes were evident only after 3-5 days of treatment, including severe alterations in the parasite cytoplasm, changes in the composition of the parasitophorous vacuole matrix and a diminished integrity of the vacuole membrane. Treatment of N. caninum infected mice with buparvaquone (100 mg/kg) either by intraperitoneal injection or gavage prevented neosporosis symptoms in 4 out of 6 mice in the intraperitoneally treated group, and in 6 out of 7 mice in the group receiving oral treatment. In the corresponding controls, all 6 mice injected intraperitoneally with corn oil alone died of acute neosporosis, and 4 out of 6 mice died in the orally treated control group. Assessment of infection intensities in the treatment groups showed that, compared to the drug treated groups, the controls showed a significantly higher parasite load in the lungs while cerebral parasite load was higher in the buparvaquone-treated groups. Thus, although buparvaquone did not eliminate the parasites infecting the CNS, the drug represents an interesting lead with the potential to eliminate, or at least diminish, fetal infection during pregnancy.


Subject(s)
Antiprotozoal Agents/pharmacology , Coccidiosis/drug therapy , Naphthoquinones/pharmacology , Neospora/drug effects , Animals , Antiprotozoal Agents/therapeutic use , Cells, Cultured , Coccidiosis/parasitology , Female , Fibroblasts/parasitology , Humans , Mice , Mice, Inbred BALB C , Naphthoquinones/therapeutic use
6.
Int J Antimicrob Agents ; 46(1): 88-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25934265

ABSTRACT

From a panel of 34 artemisinin derivatives tested in vitro, artemisone, GC007 and GC012 were most efficacious at inhibiting Neospora caninum replication (IC50 values of 3-54nM), did not notably impair the invasiveness of tachyzoites and were non-toxic for human foreskin fibroblasts (HFFs). Transmission electron microscopy of drug-treated N. caninum-infected HFFs demonstrated severe alterations in the parasite cytoplasm, changes in the composition of the matrix of the parasitophorous vacuole (PV) and diminished integrity of the PV membrane. To exert parasiticidal activity, parasites had to be cultured continuously in the presence of 5µM artemisone or GC007 for 3 weeks. N. caninum tachyzoites readily adapted to a stepwise increase in concentrations (0.5-10µM) of GC012, but not to artemisone or GC007. Drugs induced the expression of elevated levels of NcBAG1 and NcSAG4 mRNA, but only NcBAG1 could be detected by immunofluorescence. Thus, artemisinin derivatives represent interesting leads that should be investigated further.


Subject(s)
Antiprotozoal Agents/pharmacology , Artemisinins/pharmacology , Fibroblasts/drug effects , Fibroblasts/parasitology , Lactones/pharmacology , Neospora/drug effects , Antiprotozoal Agents/toxicity , Artemisinins/toxicity , Cell Survival/drug effects , Cells, Cultured , Drug Repositioning , Drug Tolerance , Humans , Inhibitory Concentration 50 , Lactones/toxicity , Microscopy, Electron, Transmission , Neospora/ultrastructure , Parasitic Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...