Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6602): eabg9302, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35709248

ABSTRACT

Mammalian cells autonomously activate hypoxia-inducible transcription factors (HIFs) to ensure survival in low-oxygen environments. We report here that injury-induced hypoxia is insufficient to trigger HIF1α in damaged epithelium. Instead, multimodal single-cell and spatial transcriptomics analyses and functional studies reveal that retinoic acid-related orphan receptor γt+ (RORγt+) γδ T cell-derived interleukin-17A (IL-17A) is necessary and sufficient to activate HIF1α. Protein kinase B (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling proximal of IL-17 receptor C (IL-17RC) activates mammalian target of rapamycin (mTOR) and consequently HIF1α. The IL-17A-HIF1α axis drives glycolysis in wound front epithelia. Epithelial-specific loss of IL-17RC, HIF1α, or blockade of glycolysis derails repair. Our findings underscore the coupling of inflammatory, metabolic, and migratory programs to expedite epithelial healing and illuminate the immune cell-derived inputs in cellular adaptation to hypoxic stress during repair.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Interleukin-17 , Receptors, Interleukin-17 , Wound Healing , Animals , Epithelium/injuries , Epithelium/metabolism , Gene Expression Profiling , Humans , Hypoxia/immunology , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-17/metabolism , Mice , Signal Transduction , Single-Cell Analysis , T-Lymphocytes/immunology , Wound Healing/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...